GDS SERS is now in use by a Malasian Maritime Institution

SERS, which is currently being used in both distance and face-to-face training in a training center established in Malta, ITU Northern Cyprus Department of Marine Engineering, and Yıldız Technical University Faculty of Naval Architecture and Maritime Studies in Ship Engine Room Simulator courses, has also started to be used in an educational institution in Malaysia. SERSTM, which will begin being used in the Engine Room Team Management training of personnel currently working on ships in Malaysia this summer, will be used in training 3rd and 4th-year maritime candidates at the beginning of the fall 2022 semester. For SERS, which is planned to be installed in stages, a system was established on June 22, 2022, where six students can receive training, and the installation will continue by increasing the number of students.

Akademi Maritim Penjana ilmu

SERS™, which was successfully installed via remote access to an educational institution in Malaysia, has also become the new favorite of maritime trainers in Malaysia. According to Çağrı Berk Güler, who coordinated the stages during the installation and is part of the group that developed SERS™, one of the biggest reasons for the preference of educational institutions and companies abroad is that remote installation can be carried out and the program is elementary to ensure compatibility with Windows-based systems.

The simulator, made ready for use with full remote access at the educational institution in Malaysia, was installed on the educational computers and then used in training. The institution said they decided to use SERS™ remotely and liked it very much. After the pilot class application, they planned to use the software for all laboratory classes.

Chief Engineer Nazir Hamzah converted the classroom into an Engine Room Team Management Training Lab using SERS™. More components and licenses will be added incrementally. This is a great approach for starting education and training.

About SERS

SERS™ covers all training given using an engine room simulator, as specified in IMO STCW 2010 qualification tables. Also covering IMO Model Course 2.07 (2017) Applications, SERS™ has started to make a name for itself, especially abroad, and has attracted the attention of the maritime sector in the Turkish market, as it offers many academic and practical applications that are not available in simulators currently used in training institutions. The essential features of SERS™, which is developed in a modular structure that can be installed in many different configurations and supplied with various budgets, its advantages and differences from competitor products and application configuration types are explained in detail on the GDS company website.

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Effect of Weather on the Marine Propulsion Engine Performance Onboard a Ship

IMO Model Course Exercise recommends students learn the weather change effect on engine performance.

GDS Engineering R&D developed a modern Engine Room Simulator (ERS) and it is in use by various research and training institutions. GDS ERS, called SERS, includes all engine room, ship, and environmental paramaters to demonstrate the weather effect to engine performance while onboard systems are maintaining their status with the displayed parameters. This scenario study is a predefined and set in the ERS for instructors to directly apply in their STCW Management Level Exercises. Student Workbooks accomodate this exercise with specficic forms to fill by the trainees.

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

A Study of the Main Propulsion Engine Performance with Ship’s Draft Change

Purpose: Exercise the weather effect to engine performance using the Ship ERS. Generate a report with capturing the images using SERS GUI panels and tools provided. Note that this exercise is generated as part of the IMO Model Course 2.07 (2017 Edition) exercises. This training exercise was developed as part of the IMO STCW 2010 Management Level objectives using the Model Course 2.07 guidelines ans steps. 

Note: This classroom exercise was provided in this page as an example. Click here to visit the Ship Engine Room Simulator product to read more.

Step 1: ERS is operated in Navigation Mode and Ballast Transfer System is lined up for ballast operations. Draft is Low (i.e. d=9 m.)

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 2: ME Processes GUI Panel displays the ME Parameters while the draft is increasing. Check Figure 2 for that the the baseline (sea test) data/graphs are displayed. Being able to understand the ME performance graphs are important in this exercise. 

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 3: Ensure the  control of the main engine is set to “RPM”.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 4: Graphs and Plots GUI Panel displays the trend data for the selected parameters. In this exercise, it is important to plot the draft and ME Power. Additionally, it is important to select the ME Power versus ME RPM in the X-Y plot area to see the ME Power change while the RPM is controlled.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 5: Status of the Ballast Tanks and Levels are important to observe.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 6: Students should be able to interpret time (trend) and X-Y graphs for this operation, as part of the MANAGEMENT LEVEL exercise objectives.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 7: Complete the exercise with noting the ME parameter changes.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Global Dynamic Systems. GDS Systems Engineering Training Programs. Simulators. Engine Room Simulator (ERS). Ship. Electrical Systems Simulator. Physics Lab. UH60. Amphibious. Ground Vehicles. Military Training Programs. MIL-STD-810H Online Training. Environmental Testing of Military Products. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by Class NK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Maritime. Marine Engineering. San Antonio, Texas, Dayton, OH. WPAFB.

GDS Engine Room Simulator: Our Customers and Collaborations

References of GDS Simulator Users
&
Solution Partners
in
Maritime Training and Research

Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET)Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
tülomsaş, R&D study, Milli Dizel Motoru Çalışması, ARGE, TÜBİTAK, Dizel Motorlarda Verimlilik, İTÜAkademi Maritim Penjana ilmuNorth Star Enterprise Bangladesh
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.tuzeks gds Engine Room Simulator (ERS) Engine Tests, Vibration Testing, Consultancy, KOSGEB Project
Simulator Studies in Cooperation between SDT and GDS Engineering R&DMILPER, Project Studies with Dr Ismail Cicek 2012-2014, Maritime Propeller R&D, Development and Testing
Karpowership logo - GDS Engineering R&D Services Karadeniz Holding

GDS ERS meets both IMO STCW 2010 Competency/Training Requirements and IMO Model Course 2.07 Exercise Requirements

Click here to read all details…

Highlights of the GDS Engine Room Simulator:
  • Certified for use in training and education of marine engineering cadets.
  • Certified by ClassNK, a Japanese Classification Society. Class NK is an official member of IACS.
  • Certification includes IMO STCW 2010 (with Manila Amendments)
  • Certification type is Full Mission (Class A) type approval.
  • Certification includes IMO Model Course 2.07 (2017 Edition).
  • Applicable for Remote (Online) Training
  • Provides two types of mostly used engine modes.
  • Simulates all engine room machinery and systems with more than 50 GUI Panels.
  • Satisfies the High Voltage Training requirements.
  • Includes Environmental Pollution modules, such as Ballast Water Treamen, Oily Water Separator, ME Denoxification System, and others.
  • Includes Energy Efficiency modules. Students can compare theoretical studies against the simulator instances using Sunken Diagrams.
  • Includes engine performance monitoring tools. Students are able to compare the current values againt the baselined ship’s navigation test as well as main engine’s factory test data. The baselined test data are presented within the software to the students with graphs. This our unique approach is to actually duplicate the real world work environment of wachkeeping engineers checking the parameters against the user manuals and engine books with test data.
  • Provides a realistic environment for emergency operations with all required systems.

Communıcate wıth us
@admin
info@GlobalDynamicSystems.com