GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests. Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule.

Electro-Magnetic Compatibility (EMC) of Marine Devices and Electrical Equipment

Devices used onboard a ship are exposed to harsh electromagnetic environments, whether in the propulsion, deck or bridge area of a ship. Testing of such devices for Electro-Magnetic Compatibility (EMC) is therefore very important. Otherwise, manufacturers can face difficulties during the certification and procurement stages.

EMC testing and certification  services to ensure your marine products comply with relevant international standards and regulations is a MUST!

GDS Engineering R&D does not perform these tests yet; however, have the information on design and test knowledge. The requirements include the international conventions as agreed by the International Maritime Organization (IMO) for Safety of Life at Sea (SOLAS).

Currently, we have observed that these tests are conducted by reputable agencies like ELEMENT.

The testing laboratories use the following standards to test the marine electronic, digital or electrical devices for certification to IMO SOLAS requirements, guidance, or recommendations:

  • IEC 60945
  • IEC 60533
  • Lloyds Register Test Spec No 1
  • DNV Certification Notes 2.4
  • IEC 60092

Click this link to read more about ELEMENT’s advertisements.  Element also provides the following additional information in their website:

Support and guidance from the initial design stage

The use of composite materials in ship construction together with new radio technologies and high power electronics are changing the requirements and design goals that need to be achieved to ensure electromagnetic compatibility.  Element is well placed with our knowledge of both standards and the target environment to provide detailed guidance of the best compliance strategies to adopt for your marine products.

CE Marking and Wheel Mark certification

Element performs EMC testing in conjunction with climatic and environmental test requirements to meet dedicated marine standards and be compliant with CE marking legislation. We make sure your marine equipment complies with the relevant EMC standards listed in the Marine Equipment Directive to help you achieve the Wheel Mark certification.

EMC test plans
Online Training on MIL-STD-810H, RTCA-DO-160, MIL-STD-461G, MIL-STD-704 Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Training Led by a Live US-based Sr. Instructor: Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. FAA Requirements Management. Efficient way of learning. Continues Education. Class Material.

Our test facilities for both EMC and environmental provide a comprehensive portfolio of tests to ensure that whatever your marine equipment is, and no matter where it’s located, we have a test solution that matches your needs.

Coordinated approach to testing for global market access

Our expertise comes from testing thousands of different products every year, and our industry-leading capacity allows us appropriate coordination of testing, so your marine equipment meets common standards of safety and performance across the EU and is accepted for entry into world markets.

For more information, we currently advice you contact with Element support desk.

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Capture GDS Vision in the Engine Room Simulator Development

In recent years, the maritime industry has seen a significant push towards technological advancement and stricter safety and operational standards. As vessels become more sophisticated and regulations evolve, the role of well-trained onboard maritime personnel becomes increasingly essential. In this context, the SIRE 2.0 program and GDS Ship Engine Room Simulator represent pioneering tools designed to equip maritime crews with deep technical skills necessary to meet new demands and improve the safety and efficiency of maritime operations.

Understanding SIRE 2.0 and Its Impact on Maritime Training

The Ship Inspection Report Programme (SIRE) has long been a fundamental tool in maintaining safety and operational standards across the maritime industry, particularly for tanker operations. Launched by the Oil Companies International Marine Forum (OCIMF), the program provides a comprehensive inspection system that evaluates the condition and operations of vessels. However, with the growing complexity of modern vessels and stricter environmental and safety regulations, the traditional SIRE program required enhancements to address these evolving needs. This led to the development of SIRE 2.0, an upgraded version that integrates data-centric inspection methodologies with a stronger focus on crew competency, operational excellence, and technical skills.

One of the key features of SIRE 2.0 is its focus on assessing the competency of crew members in handling complex equipment and operations. Rather than focusing solely on vessel condition, SIRE 2.0 evaluates the practical skills, knowledge, and decision-making abilities of onboard personnel. This ensures that crew members are not only familiar with equipment and operational standards but are also capable of responding effectively to critical situations.

The emphasis on crew competency in SIRE 2.0 aligns with the industry’s shift toward a human-centered approach in safety and operational excellence. This paradigm shift means that training programs must go beyond traditional instruction and delve into more practical, technology-driven skills, which is where simulators like the GDS Ship Engine Room Simulator come into play.

The Role of the GDS Ship Engine Room Simulator in Skill Development

The GDS Ship Engine Room Simulator is an advanced training tool that replicates the engine room environment of modern vessels, providing maritime personnel with hands-on experience in a controlled setting. This simulator covers a wide range of critical systems found in ship engine rooms, including propulsion, auxiliary machinery, electrical systems, and emergency protocols. By using the simulator, crew members can practice their skills, refine their decision-making processes, and gain confidence in handling complex systems without the risks associated with real-world errors.

The simulator allows trainees to engage in realistic scenarios, such as equipment failures, power management issues, and environmental challenges. This training is invaluable in helping them develop deep technical skills needed to respond effectively under pressure. Given the increasing complexity of ship machinery, which often integrates digital and automated controls, such simulator-based training ensures that personnel are well-prepared for both routine and emergency operations.

Developing Deep Technical Skills with SIRE 2.0 and the GDS Simulator

By integrating SIRE 2.0’s competency standards with the practical capabilities of the GDS Ship Engine Room Simulator, maritime training institutions can foster deep tech skills that are essential in today’s high-stakes maritime environment. Training programs using these tools can address various aspects, including:

Operational Readiness: By simulating real-life engine room conditions, the GDS simulator enables personnel to develop an intuitive understanding of systems and processes, which aligns with SIRE 2.0’s focus on crew readiness and situational awareness.

Crisis Management and Decision-Making: The simulator provides scenarios that replicate emergency situations, allowing trainees to practice crisis response, prioritize actions, and make critical decisions under pressure.

Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence.

Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively.

Safety Protocols: Through realistic training scenarios, the simulator reinforces safety protocols, ensuring that personnel can identify and mitigate risks, which is a core component of the SIRE 2.0 inspection program.

Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Maritime Investigation Reports Involving Man-Over-Board (MOB) Casualties: A Methodology for Evaluation Process

Turkish Journal of Maritime and Marine Sciences, Vol: 5 No: 2 (2019) 141-170.

Authors

Orhan Gönel and İsmail Çiçek

Abstract

Flag states must issue their maritime investigation reports in accordance with the International Maritime Organization (IMO) circulars with the inclusion of ‘lessons learned’ items from recorded accidents or incidents. To identify the root cause of an event, there must be enough detail of information about the investigated event presented in reports. The information included in reports may help identifying the procedural deficiencies or technical challenges. Considering the Man-Over- Board (MOB) events as a sub group of maritime accident  nvestigations, authors systematically reviewed over 100 reports containing MOB events in this study.

In this study, reports are reviewed and major differences in formats as well as level and type of information are recorded. A systematic methodology for reviewing and reporting the overall information retrieved from maritime accident reports is presented. To cover all information from reviewed reports, 113 information items are identified. An associated standard form is developed for use in extracting information from all investigation reports. Enabling the data collected systematically from reports, issued by the world maritime accident reporting states and agencies, and successively populated into a database for overall analysis, this form is called “Maritime MOB Events Investigation Form (MEI Form)”. This paper presents the content of the MEI Form and demonstrates the methodology of use for retrieving, formatting and analyzing the information from the MOB investigation reports using case examples.

Click to see published paper for more reading.

Keywords

Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Highlights

  • A Form was developed and proposed for use in accident investigations.
  • Using the form and entry into a database, maritime accident investigation data is digitized.
  • Statistical Data for MOB Events were obtained and presented.
  • results provide useful data for having lessons learned items.
  • Provides a methodology for root-cause of MOB events.
  • Lessons learnt process is automated.
Global Dynamic Systems. GDS Systems Engineering Training Programs. Simulators. Engine Room Simulator (ERS). Ship. Electrical Systems Simulator. Physics Lab. UH60. Amphibious. Ground Vehicles. Military Training Programs. MIL-STD-810H Online Training. Environmental Testing of Military Products. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by Class NK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Maritime. Marine Engineering.

GDS Engineering R&D, Inc. | Global Dynamic Systems, Inc.

In short, “GDS” develops simulator products for maritime education and training and provides Systems Engineering training courses in defense and aviation.

About Simulators

Especially for use in maritime training, GDS has developed a Ship Engine Room Simulator (SERS) and supports it as the main product, along with similar simulators. The main product of GDS, Ship Engine Room Simulator (SERS™), has been trademarked and certified by ClassNK, an international maritime certification agency. SERS has started to be used in important maritime education institutions such as Yıldız Technical University, OneYachts (Malta), and Istanbul Technical University (ITU) Maritime Faculty. In addition to SERS, GDS has developed other maritime training simulators, such as the Ship Electrical Systems Simulator,r and continues its work.

GDS also provides project-specific, knowledge—and experience-based consultancy services in the maritime sector. The TÜBİTAK project of ARKAS BIMAR and the study on Machine Learning are ongoing. He has conducted a study on the measurement and analysis of noise emitted into the sea for a ship belonging to Karadeniz Holding (Karpowership) and an internationally valid report study. Our services to the maritime sector continue with similar engineering and consultancy studies.

About Systems Engineering Training Programs

GDS personnel for the Aviation Sector provide training on the RTCA-DO-160G Environmental Test Standard and provide services on test plans and test management according to this standard.

With vast experience and expertise in defense systems development and certification in the USA, GDS also provides MIL-STD-810H training, which is very important in the Defense Sector. So far, GDS provided training to more than 1000 individuals and over 150 organizations globally.

GDS Personnel

GDS personnel also consist of academic staff at ITU Maritime Faculty and provide testing, consultancy, and engineering services within the scope of university-industry collaborations at ITU Maritime Test Application and Research Center (ITU DETAM). The ITU Marine Equipment Test Center (METC), known in English, can perform environmental tests such as vibration, temperature, icing, dropping, stacking, internal pressure, pulling, notch, sealing, and salt fog.

GDS is led by Dr Ismail Cicek, who has more than 30 years of experience in the Maritime Education and Training, Defense, and Aviation sectors.

GDS continues to contribute to global studies with its products and knowledge-experience potential.

GLOBAL DYNAMIC SYSTEMS (GDS)
TRAINING COURSES
Worldwide, Online, for ‘Groups’ or ‘Individuals’

Training on
MIL-STD-810H
ENVIRONMENTAL TESTING

Training on
EMI/EMC Testing
(per RTCA-DO-160 & MIL-STD-461)

Training on
Vibration and Shock
Testing

Training on
Systems Engineering
(DoD/FAA/NASA/EASA)

Training on
RTCA-DO-160G
ENVIRONMENTAL TESTING

Training on
MIL-STD-461G EMI/EMC Testing
(incl. MIL-STD-464)

Training on
Requirements Management
(FAA/EASA/US DoD/NASA)

Training on
MIL-STD-704F
Aircraft Electrical Interface


OUR REFERENCES

We have provided training and test consultancy services to more than 120 companies and organizations and over 1000 individual trainees so far.

References of GDS Simulator Users
&
Solution Partners
in
Maritime Training and Research

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

A new and modern Engine Room Simulator (ERS) has recently been certified by Class NK: It Meets the Online Training Requirements of IMO STCW 2010 and Model Course 2.07

Ship Engine Room Simulator (Ship ERS or SERS™) is certified to meet both IMO STCW 2010 and IMO Model Course 2.07 Exercise Requirements

[block rendering halted]

SERS™ User Manuals

SERS™ is provided with a total of seven (7) user manuals, student exercise workbooks, and documents as complementary to the training practices. All these documents are supplied with a license purchase. Using the SERS™ document set in classroom study also promotes the real-world engine room best work practices of using manuals in operation and management of the engine room machinary and systems.

SERS User Manual Vol I (Software Description) describes the SERS software with the SERS Graphical User Interface (GUI) Panels accessed from the SERS Main Graphical User Interface (GUI) Panel.

SERS User Manual Volume II (Engine Room Operations) includes the operational instructions on how to operate the engine room systems and machinery using the SERS. The training institutions can directly use the contents of this manual in their training procedures. There are also exercises included for use by the trainees for reporting.

SERS User Manual Vol III (Installation & Configuration) describes the installation and the configuration of the software and hardware items. Using this manual, SERS can be configured to run as a Distributed System and the touch screen hardware panels can be assigned to desired GUI panels using the configuration files.

SERS User Manual Volume IV (Instructor’s Manual) includes guides, information, and additional exercise tips for the instructors to utilize SERS in their trainings according to a specific training objective.

Student Exercise Workbooks per IMO Model Course 2.07

Student Exercise Workbook, Volume I: We are already using the simulator in our own training programs and developed Volume I with exercies that meets each objectives of the IMO Model Course 2.07. Volume I exercises includes the Engine Room Operational Level training objectives.

Student Exercise Workbook,Volume II: Volume II exercises includes the Engine Room Management Level training objectives in accordance with IMO Model Course 2.07.

SERS Philosophy Document provides how SERS may be used in a curricula or in engine room simulator training programs. It provides guides for selecting the configuration of the SERS according to the training objectives.

Students can Complete and Report the IMO Model Course 2.07 Exercises with Online Training

IMO Model Course Engine-Room Simulator 2.07 (2017 Edition)

  • Familiarization
  1. Familiarization
    1.1 Plant arrangement
    1.2. Instrumentation
    1.3. Alarm system
    1.4. Controls
  • Operation of plant machinery
    2.1. Operational procedures
    2.2 Operate main and auxiliary machinery and
    systems
    2.3. Operation of diesel generator 20
    2.4. Operation of steam boiler
    2.5. Operation of main engine and associated
    auxiliaries
    2.6. Operation of steam turbo generator
    2.7. Operation of fresh water generator
    2.8. Operation of pumping system
    2.9. Operation of oily water separator
    2.10. Fault detection and measures
  • Maintain a safe engineering watch 19
    3.1. Thorough knowledge of principles to be observed in keeping an engineering watch
    3.2. Safety and emergency procedures; changeover of remote/automatic to local control of all systems
    3.3. Safety precautions to be observed during a watch and immediate actions to be taken in the event of fire or accident, with particular reference to oil systems
    3.4. Knowledge of engine room resource management principles
  • Operate electrical, electronic and control systems
    4.1. Operation of main switch board
    4.2. High-voltage installations
  1. Manage operation of electrical and electronic……

Click here to read more.

Download Brochure [PDF]

We are looking for country/area representatives!

Send your requests to GDS Customer Desk @
Email: info@GlobalDynamicSystems.com
Ph: +90 (546) 585-3969

Global Dynamic Systems. GDS Systems Engineering Training Programs. Simulators. Engine Room Simulator (ERS). Ship. Electrical Systems Simulator. Physics Lab. UH60. Amphibious. Ground Vehicles. Military Training Programs. MIL-STD-810H Online Training. Environmental Testing of Military Products. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by Class NK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Maritime. Marine Engineering. San Antonio, Texas, Dayton, OH. WPAFB.

GDS Engine Room Simulator: Our Customers and Collaborations

References of GDS Simulator Users
&
Solution Partners
in
Maritime Training and Research

GDS ERS meets both IMO STCW 2010 Competency/Training Requirements and IMO Model Course 2.07 Exercise Requirements

Click here to read all details…

Highlights of the GDS Engine Room Simulator:
  • Certified for use in training and education of marine engineering cadets.
  • Certified by ClassNK, a Japanese Classification Society. Class NK is an official member of IACS.
  • Certification includes IMO STCW 2010 (with Manila Amendments)
  • Certification type is Full Mission (Class A) type approval.
  • Certification includes IMO Model Course 2.07 (2017 Edition).
  • Applicable for Remote (Online) Training
  • Provides two types of mostly used engine modes.
  • Simulates all engine room machinery and systems with more than 50 GUI Panels.
  • Satisfies the High Voltage Training requirements.
  • Includes Environmental Pollution modules, such as Ballast Water Treamen, Oily Water Separator, ME Denoxification System, and others.
  • Includes Energy Efficiency modules. Students can compare theoretical studies against the simulator instances using Sunken Diagrams.
  • Includes engine performance monitoring tools. Students are able to compare the current values againt the baselined ship’s navigation test as well as main engine’s factory test data. The baselined test data are presented within the software to the students with graphs. This our unique approach is to actually duplicate the real world work environment of wachkeeping engineers checking the parameters against the user manuals and engine books with test data.
  • Provides a realistic environment for emergency operations with all required systems.

Communıcate wıth us
@admin
info@GlobalDynamicSystems.com