GDS Systems Engineering Training Programs Banner

Download GDS Environmental Qualification Tests Training Course Description Documents in PDF Files: Training on MIL-STD-810H, RTCA-DO-160G, MIL-STD-461G, ….


Warning: Undefined array key "file" in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Deprecated: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Warning: Undefined array key "file" in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Deprecated: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Warning: Undefined array key "file" in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Deprecated: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

GDS Engineering R&D provides online international focused training on

  • MIL-STD-810H: Training on Environmental Qualification Testing of Military Equipment and Products
  • RTCA-DO-160G: Training on Environmental and EMI/EMC Testing of Airborne Equipment and Products
  • MIL-STD-461G: Training on EMI/EMC Testing of Military Electrical and Electronic Equipment and Devices
  • Requirements Management (Systems Engineering Process followed by FAA/EASA, DOD)
  • MIL-STD-704F Training on Aircraft Electrical Interface
FilenameFile DescriptionDownload Link
RTCA-DO-160G Training Description.PDFTraining Description Document for
Training on Environmental and EMI/EMC Testing of Airborne Equipment and Products
Download
MIL-STD-810H Training Description.PDFTraining Description Document for
Training on Environmental Qualification Testing of Military Equipment and Products
Download
MIL-STD-461G Training Description.PDFTraining Description Document for
Training on EMI/EMC Testing of Military Electrical and Electronic Equipment and Devices
Download

RTCA-DO-160 Fire and Flammability Training. MIL-STD-810H. Risks and Assessment Techniques.

Training Program Description: MIL-STD-810H Training Environmental Testing of Military Equipment

Training Program Description for
GDS MIL-STD-810H Training Environmental Testing of Military Equipment

Two and a half days of
focused International and Online Training
on MIL-STD-810H with Emphasis on “Tailoring

by
GDS Engineering R&D, Inc.

Display or download the PDF file: MIL-STD-810H Training Description
or read all details of this training program at: https://www.globaldynamicsystems.com/systems-engineering-training-courses/training-on-mil-std-810h-dod/

Training Schedule and Execution Type
  • Training Type: International / Online
  • Satus: Seats are avaiable now.
  • Online training using ZOOM.
  • Led by a live, U.S. based instructor (Dr Ismail Cicek) (PDF) (Download PDF)
  • A usual 2.5 days of training schedule is as follows:
      • 1st Day: 09:00 – 13:00
    • 2nd Day: 09:00 – 17:00 (Lunch Break between 12:30 and 13:30)
    • 3rd Day: 09:00 – 17:00 (Lunch Break between 12:30 and 13:30)
    • Time zone: Central Daylight Time (US CDT, UTC-5)
  • Ending time may vary+/-30 minutes depending on the length of the discussions.
  • Course Material: English
  • Comm. Language: English
  • Material: Registration includes all presentations and additional material (English) shared before the class.
  • Attandance: The link for online class is distributed to registered trainees upon registration.
  • Attendees will receive a Training Certificate.
  • Training includes knowledge check quizzes, a competition type fun way or learning.

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.


Training Registration Request Form

Please fill out the following form for asking your question or with a registration request. Thank you for your interest in our training programs.

[contact-form-7 id=”229″ title=”Training Request Form 1″]

About the Instructors

The main instructor of the training is Dr Ismail Cicek. An Avionics Chief Engineer (EE) who is also a Certified Verification Engineer (FAA/EASA) also assists the trainings. Our experienced test personnel also becomes avialable for demonstrations and discussions.

A Certified Verification Engineer (CVE) iaw FAA/EASA and with 18 years of experience. He has worked as the avionics systems chief engineer in product development of avionics systems. He is also experienced in the product testing per environmental and EMI/EMC standards and FAA/EASA certification processes.

Our experienced personnel also support our training programs. They are actively participating in the environmental testing of products.

Dr. Ismail Cicek studied PhD in Mechanical Engineering Department at Texas Tech University in Texas, USA. He study included random vibration. He has both industrial and academic experience for over 30 years.

He gained engineering and leadership experience by working in the United States Department of Defence projects and programs as systems development engineer for 15 years. He led the development of various engineering systems for platforms including C-5, C-17, KC-10, KC-135, and C-130 E/H/J.  Dr. Cicek’s experience includes unmanned aerial vehicle development where he utilized the Geographical Information Systems (GIS) and Malfunction Data Recorder Analysis Recorder System (MADARS) development for military transport aircraft. 

Dr Cicek worked as the lab chief engineer for five years at the US Air Force Aeromedical Test Lab at WPAFB, OH. He received many important awards at the positions he served, due to the excellent team-work and his detail oriented and energetic personality.  These included Terra Health’s Superior Client Award in 2009 and Engineering Excellence Award in 2010 as well as an appreciation letter from the US Air Force Aeronautical Systems Center (ASC), signed by the commander in charge.

Dr Cicek also established a test lab, called Marine Equipment Test Center (METC) and located at Istanbul Technical University, Tuzla Campus, for testing of equipment per military and civilian standards, such as RTCA-DO-160. Providing engineering, consultancy, and training services to many companies and organizations, Dr. Cicek has gained a great insight into the tailoring of standard test methods in accordance with military standards, guides, and handbooks as well as Life Cycle Environmental Profile LCEP) developed for the equipment under test.

Dr. Cicek also completed various product and research projects, funded in the USA, EU, and Turkey. He is currently teaching at Istanbul Technical University Maritime Faculty, Tuzla/Istanbul. He is the founding manager of the METC in Tuzla Campus of ITU. Meanwhile, he provided engineering services, consultancies, and training to many organizations for product development, engineering research studies such a algorith development, test requirements development, and test plans and executions.

Dr Cicek worked as the Principle Investigator and became a Subject Matter Expert (SME) at the US Air Force Aeromedical Test Lab (WPAFB/OH) for certifying the products to the US Air Force Platform Requirements. He also developed Joint Enroute Care Equipment Test Standard (JECETS) in close work with US Army Test Lab engineers and managers.

Read DAU Paper: “A New Process for the Acceleration Test and Evaluation of Aeromedical Equipment for U.S. Air Force Safe-To-Fly Certification”. Click to display this report.

Connect with Dr Ismail Cicek: Linkedin Page

Click here to read more about Dr Cicek’s professional studies.

GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests.

MIL-STD-461G Training Description

MIL-STD-461G Training on EMI/EMC Testing of Military Equipment

TRAINING PROGRAM DESCRIPTION

Two and a half days of focused International and Online Training on MIL-STD-461G (& MIL-STD-464D)

by

GDS Engineering R&D, Inc.

Display or download the PDF file: GDS MIL-STD-461G Training Desription
or read details of the program at: https://www.globaldynamicsystems.com/systems-engineering-training-courses/mil-std-461g-training/

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.


Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Effect of Weather on the Marine Propulsion Engine Performance Onboard a Ship

IMO Model Course Exercise recommends students learn the weather change effect on engine performance.

GDS Engineering R&D developed a modern Engine Room Simulator (ERS) and it is in use by various research and training institutions. GDS ERS, called SERS, includes all engine room, ship, and environmental paramaters to demonstrate the weather effect to engine performance while onboard systems are maintaining their status with the displayed parameters. This scenario study is a predefined and set in the ERS for instructors to directly apply in their STCW Management Level Exercises. Student Workbooks accomodate this exercise with specficic forms to fill by the trainees.

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

A Study of the Main Propulsion Engine Performance with Ship’s Draft Change

Purpose: Exercise the weather effect to engine performance using the Ship ERS. Generate a report with capturing the images using SERS GUI panels and tools provided. Note that this exercise is generated as part of the IMO Model Course 2.07 (2017 Edition) exercises. This training exercise was developed as part of the IMO STCW 2010 Management Level objectives using the Model Course 2.07 guidelines ans steps. 

Note: This classroom exercise was provided in this page as an example. Click here to visit the Ship Engine Room Simulator product to read more.

Step 1: ERS is operated in Navigation Mode and Ballast Transfer System is lined up for ballast operations. Draft is Low (i.e. d=9 m.)

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 2: ME Processes GUI Panel displays the ME Parameters while the draft is increasing. Check Figure 2 for that the the baseline (sea test) data/graphs are displayed. Being able to understand the ME performance graphs are important in this exercise. 

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 3: Ensure the  control of the main engine is set to “RPM”.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 4: Graphs and Plots GUI Panel displays the trend data for the selected parameters. In this exercise, it is important to plot the draft and ME Power. Additionally, it is important to select the ME Power versus ME RPM in the X-Y plot area to see the ME Power change while the RPM is controlled.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 5: Status of the Ballast Tanks and Levels are important to observe.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 6: Students should be able to interpret time (trend) and X-Y graphs for this operation, as part of the MANAGEMENT LEVEL exercise objectives.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Step 7: Complete the exercise with noting the ME parameter changes.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Capture GDS Vision in the Engine Room Simulator Development

In recent years, the maritime industry has seen a significant push towards technological advancement and stricter safety and operational standards. As vessels become more sophisticated and regulations evolve, the role of well-trained onboard maritime personnel becomes increasingly essential. In this context, the SIRE 2.0 program and GDS Ship Engine Room Simulator represent pioneering tools designed to equip maritime crews with deep technical skills necessary to meet new demands and improve the safety and efficiency of maritime operations.

Understanding SIRE 2.0 and Its Impact on Maritime Training

The Ship Inspection Report Programme (SIRE) has long been a fundamental tool in maintaining safety and operational standards across the maritime industry, particularly for tanker operations. Launched by the Oil Companies International Marine Forum (OCIMF), the program provides a comprehensive inspection system that evaluates the condition and operations of vessels. However, with the growing complexity of modern vessels and stricter environmental and safety regulations, the traditional SIRE program required enhancements to address these evolving needs. This led to the development of SIRE 2.0, an upgraded version that integrates data-centric inspection methodologies with a stronger focus on crew competency, operational excellence, and technical skills.

One of the key features of SIRE 2.0 is its focus on assessing the competency of crew members in handling complex equipment and operations. Rather than focusing solely on vessel condition, SIRE 2.0 evaluates the practical skills, knowledge, and decision-making abilities of onboard personnel. This ensures that crew members are not only familiar with equipment and operational standards but are also capable of responding effectively to critical situations.

The emphasis on crew competency in SIRE 2.0 aligns with the industry’s shift toward a human-centered approach in safety and operational excellence. This paradigm shift means that training programs must go beyond traditional instruction and delve into more practical, technology-driven skills, which is where simulators like the GDS Ship Engine Room Simulator come into play.

The Role of the GDS Ship Engine Room Simulator in Skill Development

The GDS Ship Engine Room Simulator is an advanced training tool that replicates the engine room environment of modern vessels, providing maritime personnel with hands-on experience in a controlled setting. This simulator covers a wide range of critical systems found in ship engine rooms, including propulsion, auxiliary machinery, electrical systems, and emergency protocols. By using the simulator, crew members can practice their skills, refine their decision-making processes, and gain confidence in handling complex systems without the risks associated with real-world errors.

The simulator allows trainees to engage in realistic scenarios, such as equipment failures, power management issues, and environmental challenges. This training is invaluable in helping them develop deep technical skills needed to respond effectively under pressure. Given the increasing complexity of ship machinery, which often integrates digital and automated controls, such simulator-based training ensures that personnel are well-prepared for both routine and emergency operations.

Developing Deep Technical Skills with SIRE 2.0 and the GDS Simulator

By integrating SIRE 2.0’s competency standards with the practical capabilities of the GDS Ship Engine Room Simulator, maritime training institutions can foster deep tech skills that are essential in today’s high-stakes maritime environment. Training programs using these tools can address various aspects, including:

Operational Readiness: By simulating real-life engine room conditions, the GDS simulator enables personnel to develop an intuitive understanding of systems and processes, which aligns with SIRE 2.0’s focus on crew readiness and situational awareness.

Crisis Management and Decision-Making: The simulator provides scenarios that replicate emergency situations, allowing trainees to practice crisis response, prioritize actions, and make critical decisions under pressure.

Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence.

Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively.

Safety Protocols: Through realistic training scenarios, the simulator reinforces safety protocols, ensuring that personnel can identify and mitigate risks, which is a core component of the SIRE 2.0 inspection program.