SERS™4Team Optimizing the Engine Room Simulator Configurations using GDS SERS™. The GDS Ship Engine Room Simulator Team System (SERS™4Team) is a cutting-edge maritime simulation platform designed to enhance collaborative teamwork in the maritime industry. Specifically developed to meet the IMO STCW 2010 Standards for Training and Certification of Watchkeeping, including Model Course 2.07 (2017 Ed.), SERS™4Team provides comprehensive marine engineering training through an immersive full mission engine room simulator (ERS) environment.   SERS™4Team focuses on IMO Engine Room Resource Management principles, enabling trainees to develop critical skills in communication, decision-making, and task allocation within a realistic engine room setting. The system covers all aspects of engine room operations, from ship electrical systems to main propulsion, and offers training at both operational and management levels.   Furthermore, SERS™4Team facilitates in-depth assessment and evaluation of trainee performance, allowing instructors to identify strengths and weaknesses. Advanced tools for root-cause analysis and troubleshooting enable trainees to understand and learn from their mistakes, ultimately improving their technical skills and problem-solving abilities. By incorporating scenarios focused on energy efficiency, SERS™4Team promotes best practices for optimized fuel consumption and reduced environmental impact. This ensures that trainees are not only technically proficient but also environmentally responsible. Sources and related content

Optimizing Maritime Engineering Training: A Deep Dive into the SERS™4Team Simulator

Our new paper about SERS™ and ERM Training has been published in the Proceedings of IMLA 29.

Paper Reference Information (APA):

Ismail Cicek and Burak Cavusoglu (2024). An Optimized Ship Engine Room Simulator Configuration for Effective Engine Room Resource Management Training. Proceedings of the International Maritime Lecturers Association (IMLA) Conference. Pages 36-50. Conference held on September 25-28, Istanbul, Turkey.

Download our Paper in PDF File:

CavusogluCicek-An-Optimize-Shipr-Engine-Room-Simulator-Configuration-for-ERM-training

As part of the IMLA 2024 Conference, the new engine room simulator, called Ship Engine Room Simulator (SERS™) 4Team, SERS™4Team, has been demonstrated by Istanbul Technical University.

There was a great interest in the SERS™4Team demonstrations at the GDS booth and demonstrations at the Istanbul Technical University.

There was a great interest in the SERS™4Team demonstrations at the GDS booth and demonstrations at the Istanbul Technical University.

Optimizing Maritime Engineering Training: A Deep Dive into the SERS™4Team Simulator

The International Maritime Lecturers’ Association (IMLA) 2024 Conference provided a compelling platform for showcasing advancements in maritime education and training. Among the highlights was the demonstration of Istanbul Technical University’s latest innovation: the Ship Engine Room Simulator (SERS™) 4Team. This cutting-edge simulator offers a significant leap forward in training maritime engineers, addressing critical challenges and aligning with contemporary industry standards.

The SERS™ 4Team distinguishes itself through its robust capabilities for both research and training, focusing on engine performance management within a collaborative teamwork environment. This emphasis on collaborative teamwork is crucial, reflecting the complex and interdependent nature of modern ship engine rooms. The simulator facilitates training in a full mission training configuration, allowing multiple trainees to interact within a virtual engine room environment, mirroring real-world operational dynamics. This approach directly addresses the need for effective communication, coordination, and shared decision-making in critical situations.

A key strength of the SERS™ 4Team lies in its ability to simulate a wide array of scenarios, including those with potentially catastrophic consequences. Notably, the simulator can recreate events leading to a blackout of the ship, a scenario of paramount concern in maritime safety. By allowing trainees to experience and respond to such high-stakes situations in a controlled environment, the SERS™ 4Team fosters crucial decision-making skills and enhances preparedness for real-world emergencies. This focus on critical scenarios directly supports the development of competencies outlined in the IMO STCW 2010 Convention, ensuring that trainees are equipped to handle complex and challenging operational conditions.

Furthermore, the SERS™ 4Team is designed with cost-effectiveness in mind. By providing a virtual training environment, the simulator reduces the reliance on expensive and potentially hazardous onboard training, offering a more sustainable and accessible approach to maritime education. This cost-effectiveness does not compromise the quality of training; on the contrary, the simulator offers a controlled and repeatable learning experience, allowing trainees to practice complex procedures and respond to critical scenarios multiple times, enhancing their understanding and proficiency.

The simulator’s design explicitly incorporates exercises and scenarios derived from the IMO Model Course 2.07, ensuring that training aligns with internationally recognized standards for marine engineering education. This alignment underscores the simulator’s commitment to delivering high-quality, standardized training that meets the evolving demands of the maritime industry. By integrating the principles of Collaborative Teamwork within a Full Mission Training Configuration, and by addressing critical scenarios such as ship blackouts, the SERS™ 4Team offers a powerful tool for optimizing maritime engineering training and enhancing maritime safety, fully supporting the development of IMO STCW 2010 Competencies. This innovative approach to training promises to significantly contribute to the development of competent and resilient maritime engineers.

Engine Room Simulator (ERS), Marine Engineering Training, Maritime Simulation, IMO STCW 2010 Standards for Training and Certification of Watchkeeping, Model Course 2.07 (2017 Ed.), Ship Electrical Systems, Full Mission, Assessment, Evaluation, Root-Cause Analysis, Troubleshooting, Performance, Operational Level, Management Level, Energy Efficiency, Online Training
Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence. Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively. Safety Protocols: Through realistic training scenarios, the simulator reinforces safety protocols, ensuring that personnel can identify and mitigate risks, which is a core component of the SIRE 2.0 inspection program.

SIRE 2.0 Training and GDS SERS™

The Importance of SIRE 2.0 and GDS Ship Engine Room Simulator in Developing Advanced Skills for Onboard Maritime Personnel

The maritime industry has significantly pushed towards technological advancement and stricter safety and operational standards in recent years. As vessels become more sophisticated and regulations evolve, the role of well-trained onboard maritime personnel becomes increasingly essential. In this context, the SIRE 2.0 program and GDS Ship Engine Room Simulator represent pioneering tools designed to equip maritime crews with deep technical skills necessary to meet new demands and improve the safety and efficiency of maritime operations. These tools provide a more immersive and practical learning experience, allowing crew members to understand ship operations and emergency procedures better, thereby enhancing their ability to respond effectively in real-world situations.

Understanding SIRE 2.0 and Its Impact on Maritime Training

A Team That Loves to Create

The Ship Inspection Report Program (SIRE) has long been a fundamental tool in maintaining safety and operational standards across the maritime industry, particularly for tanker operations. Launched by the Oil Companies International Marine Forum (OCIMF), the program provides a comprehensive inspection system that evaluates the condition and operations of vessels. However, with the growing complexity of modern ships and stricter environmental and safety regulations, the traditional SIRE program required enhancements to address these evolving needs. This led to the development of SIRE 2.0, an upgraded version that integrates data-centric inspection methodologies with a stronger focus on crew competency, operational excellence, and technical skills.

One of SIRE 2.0's key features is its focus on assessing crew members' competency in handling complex equipment and operations. Rather than focusing solely on vessel conditions, SIRE 2.0 evaluates the practical skills, knowledge, and decision-making abilities of onboard personnel. This ensures that crew members are familiar with equipment and operational standards and capable of responding effectively to critical situations.

The emphasis on crew competency in SIRE 2.0 aligns with the industry’s shift toward a human-centered approach to safety and operational excellence. This paradigm shift means that training programs must go beyond traditional instruction and delve into more practical, technology-driven skills, where simulators like the GDS Ship Engine Room Simulator come into play.

The Role of the GDS Ship Engine Room Simulator in Skill Development

Keep It Simple

The GDS Ship Engine Room Simulator is an advanced training tool that replicates the engine room environment of modern vessels, providing maritime personnel with hands-on experience in a controlled setting. This simulator covers many critical systems in ship engine rooms, including propulsion, auxiliary machinery, electrical systems, and emergency protocols. By using the simulator, crew members can practice their skills, refine their decision-making processes, and gain confidence in handling complex systems without the risks associated with real-world errors.

The simulator allows trainees to engage in realistic scenarios, such as equipment failures, power management issues, and environmental challenges. This training is invaluable in helping them develop deep technical skills needed to respond effectively under pressure. Given the increasing complexity of ship machinery, which often integrates digital and automated controls, such simulator-based training ensures that personnel are well-prepared for routine and emergency operations.

Developing Deep Technical Skills with SIRE 2.0 and the GDS Simulator

By integrating SIRE 2.0’s competency standards with the practical capabilities of the GDS Ship Engine Room Simulator, maritime training institutions can foster deep tech skills that are essential in today’s high-stakes maritime environment. Training programs using these tools can address various aspects, including:

  1. Operational Readiness: By simulating real-life engine room conditions, the GDS simulator enables personnel to understand systems and processes intuitively, aligning with SIRE 2.0’s focus on crew readiness and situational awareness.
  2. Crisis Management and Decision-Making: The simulator provides scenarios that replicate emergencies, allowing trainees to practice crisis response, prioritize actions, and make critical decisions under pressure.
  3. Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence.
  4. Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively. The SIRE 2.0 program also plays a crucial role in this aspect, as it evaluates a vessel’s environmental management systems and crew’s awareness of environmental issues, ensuring that the vessel operates in a safe and environmentally responsible manner.
  5. Safety Protocols: The simulator reinforces safety protocols through realistic training scenarios, ensuring that personnel can identify and mitigate risks, a core SIRE 2.0 inspection program component. The SIRE 2.0 program, focusing on crew competency and operational excellence, further enhances safety by ensuring that crew members are well-trained and capable of handling emergencies effectively, thereby reducing the risk of accidents and ensuring the safety of the vessel and its crew.
SIRE 2.0 Training, Engine Room Simulator (ERS), Ship Engine Room Simulator (SERS) Marine Engineering Training, Maritime Simulation, IMO STCW 2010 Standards for Training and Certification of Watchkeeping, Model Course 2.07 (2017 Ed.), Ship Electrical Systems, Full Mission, Assessment, Evaluation, Root-Cause Analysis, Troubleshooting, Performance, Operational Level, Management Level, Energy Efficiency, Online Training

Enhancing the Future of Maritime Training

Training methodologies must evolve accordingly as the maritime industry continues to advance technologically. SIRE 2.0 and the GDS Ship Engine Room Simulator represent a forward-thinking approach to maritime training that emphasizes deep technical skills, operational competence, and environmental awareness. By embedding these elements into their training programs, maritime institutions can ensure that their personnel are qualified to operate today’s vessels and prepared to meet the challenges of tomorrow’s maritime landscape.

In summary, the combination of SIRE 2.0 standards and the immersive experience of the GDS Ship Engine Room Simulator is a critical step forward for maritime training. Using SERS in SIRE 2.0 training provides a more skilled, adaptable workforce better equipped to operate in a complex, evolving industry, ultimately enhancing global maritime operations’ safety, efficiency, and environmental responsibility.

Engine Room Simulator, ERS, Ship, Engine Room, Marine Engineering, Maritime, Simulation, IMO STCW 2010, Standards for Training and Certification of Watchkeeping, Ship, Model Course 2.07 (2017 Ed.), SERS

The SIRE 2.0 training starts with the GDS SERS™ product using the newly developed SERS-T™ Tanker Ship model.

On July 8, 2023, Yıldız Technical University Faculty of Naval Architecture and Maritime Faculty Member Prof. Dr. Ahmet Dursun Alkan visited to see the Tanker Model SERS-T™, which will be the product of SERS™, and the Ship Engine Room SERS™, which is being installed at ITU Faculty of Maritime.

During the meeting at the ITU Maritime Faculty where SERS™, developed by GDS Engineering ARGE, was developed, SERS-T™, which is being developed for the SIRE 2.0 and ISM Code-Based Training of Tanker Type Ship Personnel within the scope of the TÜBİTAK 1501 Project, was introduced. With SERS-T™, a new system will be created to train sailors who will board the Tanker Ship. SERS™, which is actively used during the introduction, was also introduced.

In the developing simulator, Tanker ship machinery systems will be mathematically modeled and Graphical User Interface (GUI) Panels will be designed. The developed simulator will be compatible with SIRE 2.0 and ISM Codes required in Tanker Ships, and seafarers who will work on the Tanker Ship will be able to perform their training with Operation and Management level training scenarios.

During the visit, the Simulator Center for SERS™, which is being established at ITU Maritime Faculty, was toured.

SERS™ has been pre-installed at ITU Maritime Faculty. SERS™, which was brought to ITU in collaboration with GDS Engineering R&D and SimBT, was highly appreciated by Assoc. Prof. Dr. Ahmet Dursun Alkan. He also shared his own views and recommendations for SERS™ and SERS-T™ with Dr. İsmail Çiçek.

SERS™, which is being installed at ITU Maritime Faculty Simulator Center, will provide training to students from Turkish Maritime schools at ITU Maritime Faculty, thanks to its structure that keeps up with technology for education and its rapid adaptation to today’s ship models, and will ensure that the sector is trained with conscious sailors who are knowledgeable about ship engine rooms.

The Role of the GDS Ship Engine Room Simulator in Skill Development

The GDS Ship Engine Room Simulator is an advanced training tool that replicates the engine room environment of modern vessels, providing maritime personnel with hands-on experience in a controlled setting. This simulator covers a wide range of critical systems found in ship engine rooms, including propulsion, auxiliary machinery, electrical systems, and emergency protocols. By using the simulator, crew members can practice their skills, refine their decision-making processes, and gain confidence in handling complex systems without the risks associated with real-world errors.

The simulator allows trainees to engage in realistic scenarios, such as equipment failures, power management issues, and environmental challenges. This training is invaluable in helping them develop deep technical skills needed to respond effectively under pressure. Given the increasing complexity of ship machinery, which often integrates digital and automated controls, such simulator-based training ensures that personnel are well-prepared for both routine and emergency operations.

Developing Deep Technical Skills with SIRE 2.0 and the GDS Simulator

By integrating SIRE 2.0’s competency standards with the practical capabilities of the GDS Ship Engine Room Simulator, maritime training institutions can foster deep tech skills that are essential in today’s high-stakes maritime environment. Training programs using these tools can address various aspects, including:

Operational Readiness: By simulating real-life engine room conditions, the GDS simulator enables personnel to develop an intuitive understanding of systems and processes, which aligns with SIRE 2.0’s focus on crew readiness and situational awareness.

Crisis Management and Decision-Making: The simulator provides scenarios that replicate emergency situations, allowing trainees to practice crisis response, prioritize actions, and make critical decisions under pressure.

Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence.

Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively.

Safety Protocols: Through realistic training scenarios, the simulator reinforces safety protocols, ensuring that personnel can identify and mitigate risks, which is a core component of the SIRE 2.0 inspection program.

Engine Room Simulator, ERS, Ship, Engine Room, Marine Engineering, Maritime, Simulation, IMO STCW 2010, Standards for Training and Certification of Watchkeeping, Ship, Model Course 2.07 (2017 Ed.), SERS, Maritime, Ship Electricity, Electrical Systems
Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence. Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively. Safety Protocols: Through realistic training scenarios, the simulator reinforces safety protocols, ensuring that personnel can identify and mitigate risks, which is a core component of the SIRE 2.0 inspection program.

GDS SERS™ Makes IMO Engine Room Resource Management (ERM) Certificate Trainings Conducted Efficiently and Effectively

Description of an ERM Training

Engine Room Resource Management (ERM) is a system of achieving safe engineering operations by proactively utilizing and managing personnel, equipment, and information in the machinery space. A review the team roles, human factors, and situational awareness is required to plan and implement a proper ERM program. Remember, good ERM practices can save personnel and vessels from unwanted risks.

The course complies with the standards of Regulation III/1, III/2, III/6 and VIII/2 of STCW Convention, Section A-III/1, III/2, III/6, A-VIII/2 and B-VIII/2 of STCW Code and SIRE requirements.

Topics in a ERM training includes

  • Learn about effective resource allocation including crew, plant, equipment, and information management
  • Understand the leadership responsibilities of the Chief Engineer, including staff training and motivation, preventing crew fatigue, and conducting appropriate drills
  • Review individual and team roles, and how to reduce human error using situational awareness and closed loop communication
  • See engine room equipment functions and standard operating procedures

Relevance of this Training with existing IMO Model Courses

This course includes the topics using the guidance provided by the following IMO Model Courses.

  • IMO Model Course 7.02 Chief Engineer Officer and Second Engineer Officer
  • IMO Model Course 7.04 Officer in Charge of an Engineering Watch
  • IMO Model Course 2.07 Engine Rooms Simulator. 2017 Ed.
  • IMO Model Course 1.39 Leadership and Teamwork
  • IMO Model Course 1.38 Marine Environmental Awareness

Referenced Documents

The following documents must be used along with this document for effectively planning and providing an ERM training.

GDS SERS User Manuals and Documents

  • User Manual Vol I (SERS Software Description) describe the SERS software with the SERS Graphical User Interface (GUI) Panels accessed from the SERS Main Graphical User Interface (GUI) Panel.
  • User Manual Volume II (Engine Room Operations) includes the operational instructions on how to operate the engine room systems and machinery using the SERS.
  • User Manual Vol III (Installation & Configuration) describes the installation and the configuration of software and hardware items
  • This manual, User Manual Volume IV (Instructor’s Manual), includes guides and information for the instructors to utilize SERS in their trainings according to their specific training objectives.
  • Refer to “SERS Philosophy Document” for selecting the configuration of the SERS for your training objectives.  Then use Vol. III for the proper installation of the SERS and reading the configuration guidelines.

External Referenced Documens

  • IMO Model Course 7.02 Chief Engineer Officer and Second Engineer Officer
  • IMO Model Course 7.04 Officer in Charge of an Engineering Watch
  • IMO Model Course 2.07 Engine Rooms Simulator. 2017 Ed.
  • IMO Model Course 1.39 Leadership and Teamwork
  • IMO Model Course 1.38 Marine Environmental Awareness

ENGINE ROOM RESOURCE MANAGEMENT TRAINING MODEL

Engine Room Resource Management (ERM) is a system of achieving safe engineering operations by proactively utilizing and managing personnel, equipment, and information in the machinery space. A review the team roles, human factors, and situational awareness is required to plan and implement a proper ERM program. Remember, good ERM practices can save personnel and vessels from unwanted risks.

The course complies with the standards of Regulation III/1, III/2, III/6 and VIII/2 of STCW Convention, Section A-III/1, III/2, III/6, A-VIII/2 and B-VIII/2 of STCW Code and SIRE requirements.

The course is aimed at officers of the engineering watch (operational level), 2nd Engineer and Chief Engineer (management level).

The course is a mix of theory case studies and simulation exercise covering topics below. The following are the four main areas to cover in an ERM training:

GDS SERS IMO Engine Room Resource Management Course Model 2.07 IMO. Certification Training. Marine Engineering Cadets. Class Regulations.
  • RESOURCE ALLOCATION: Effective resource allocation including crew, plant, equipment, and information management.
  • LEADERSHIP: The leadership responsibilities of the Chief Engineer, including staff training and motivation, preventing crew fatigue, and conducting appropriate drills
  • TEAM ROLES AND RESPONSIBILITIES: The roles and responsibilities for both individuals and team. Planning and execution must be reviewed with past experiences with the aim of reducing human error using situational awareness and closed loop communication.
  • TECHNICAL OPERATIONS MANAGEMENT: A study with a thorough review of equipment functions, standard operating procedures including safety procedures.

Designing your ERM Training with SERS

In this section, we provide a guidance on how to design an IMO ERM training with step by step approach. We hope that it helps you provide an effective training for your cadets or engineers already working onboard.

1. Certification of the Simulator

Certification of the simulator is highly important. You must ensure that it has all capabilities to provide the capabilities training based on STCW 2010. As for the ERM training, the simulator must be capable of demonstrating the IMO Model Course (2.07) exercises.

GDS Ship Engine Room Simulator (SERS™) is a Training Simulator System with a Full Mission (Class A) type approval certificate obtained from ClassNK. ClassNK is an IACS affiliate Classification Organization. Certificate of SERS™ lists the IMO STCW 2010 competencies, as provided in Table 1, which includes the compliance to IMO STCW Tables A-III. The class certification of SERS includes the IMO Model Course 2.07 (207) Ed.). The trainee is able to perform all exercises contained in the IMO Model Course 2.07. All exercises were demonstrated during the Class Type Approval.

Table 1: SERS™ Certification Items for STCW Training Competencies.

IMO STCW-2010 ReferenceCompetence
Table A-III/1.1Maintain a safe engineering watch
Table A-III/1.2Use English in written and oral form
Table A-III/1.3Use internal communication systems
Table A-III/1.4Operate main and auxiliary machinery and associated control systems
Table A-III/1.5Operate fuel, lubrication, ballast and other pumping systems and associated control systems
Table A-III/1.6Operate electrical, electronic and control systems
Table A-III/1.10Ensure compliance with pollution prevention requirements
Table A-III/1.11Maintain seaworthiness of the ship
Table A-III/1.12Prevent, control and fight fires on board
Table A-III/1.16Application of leadership and team working skills
Table A-III/2.1Manage the operation of propulsion plant machinery
Table A-III/2.2Plan and schedule operations
Table A-III/2.3Operation, surveillance, performance assessment and maintaining safety of propulsion plant and auxiliary Machinery
Table A-III/2.4Manage fuel, lubrication and ballast operations
Table A-III/2.5Manage operation of electrical and electronic control equipment
Table A-III/2.6Manage troubleshooting restoration of electrical and electronic control equipment to operating condition
Table A-III/2.8Detect and identify the cause of machinery malfunctions and correct faults
Table A-III/2.10Control trim, stability and stress
Table A-III/2.11Monitor and control compliance with legislative requirements and measures to ensure safety of life at sea and protection of the marine environment
Table A-III/2.14Use leadership and managerial skills
Table A-III/4.2For keeping a boiler watch: Maintain the correct water levels and steam pressures
Table A-III/6.1Monitor the operation of electrical, electronic and control systems
Table A-III/6.2Monitor the operation of automatic control systems of propulsion and auxiliary machinery
Table A-III/6.3Operate generators and distribution systems
Table A-III/6.4Operate and maintain power systems in excess of 1,000 volts
Table A-III/6.5Operate computers and computer networks on ships
Table A-III/6.7Use internal communication systems
Table A-III/6.9Maintenance and repair of automation and control systems of main propulsion and auxiliary machinery
Table A-III/6.12Ensure compliance with pollution-prevention requirements

2. Simulator Detail Specs

This is probably the most tricky part. Some simulators could be cheap (!) and may be simulating the systems at a very high level. Does it have a main engine lubricating oil system? Probably yes. Does it satisfy the IMO competencies. Well this is the tricky part. It must have the LO Temperature Control System appropariately and realistically simulating the systems. We gave a simple example. Most trainers learn the specifics of the simulator after some experience of using it and become aware of the isues that prevent providing an efficient engine room simulator training. This may not be of an issue for a freshman level students; however, it becomes important when trainees are already completed their training onboard a ship and that they completed their marine engine engineering courses (Diesel Engines, Ship Auxiliary Engines, Electrical Systems, Automatic Control Systems, etc.). Additionally, the models and simulated systems has critical importance when the trainees are the personnel already have experience onboard a ship. Usually, the trainees in an ERM course will be watchkeeping officers or even chief engineers and they will probably critisize the training if the simulations are not realistic!

We have written the full specifications list for an engine room simulator, generalized with a focus on how it must help the instructors in the training. We went through each section of both the IMO STCW 2010 and IMO Model Course 2.07 and ensure the full list is at hand with the training in focus. Do not hesitate to request a copy if you are establishing an engine room training facility. We will be glad to help as trainers with ERS training experience of more than 20 years.

We should warn you that you must prepare the requirements for purchasing an Engine Room Simulator not the manufacturer.

3. Simulator Configurations

The training area must be organized with a focus into the training goals and objectives. The number of students to train at once is also an important element.

There are two examples of simulator configırations shown with the following figures. You must define your objectives first and ensure that a satisfactory number of stations and area is provided during the training.

ERS Training Plant GDS Engineering Inc SERS Full Mission Engine Room Simulator Layout and Equipment Arrangement
ERS Training Plant GDS Engineering Inc SERS Full Mission Engine Room Simulator Layout and Equipment Arrangement
Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Operating Marine Diesel Engines – IMO STCW 2010 Competency Requirements

Operation of the engine room machinary and systems: Watch GDS Engine Room Simulator Demonstration Videos

Watch the videos demonstrated by our students. Operation of the engine room machinary and system in accordance with the IMO Compentency Requirements.

Thanks fr watching and please communicate with us if you would like to have this training system be incorporated in your training programms.