Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Capture GDS Vision in the Engine Room Simulator Development

In recent years, the maritime industry has seen a significant push towards technological advancement and stricter safety and operational standards. As vessels become more sophisticated and regulations evolve, the role of well-trained onboard maritime personnel becomes increasingly essential. In this context, the SIRE 2.0 program and GDS Ship Engine Room Simulator represent pioneering tools designed to equip maritime crews with deep technical skills necessary to meet new demands and improve the safety and efficiency of maritime operations.

Understanding SIRE 2.0 and Its Impact on Maritime Training

The Ship Inspection Report Programme (SIRE) has long been a fundamental tool in maintaining safety and operational standards across the maritime industry, particularly for tanker operations. Launched by the Oil Companies International Marine Forum (OCIMF), the program provides a comprehensive inspection system that evaluates the condition and operations of vessels. However, with the growing complexity of modern vessels and stricter environmental and safety regulations, the traditional SIRE program required enhancements to address these evolving needs. This led to the development of SIRE 2.0, an upgraded version that integrates data-centric inspection methodologies with a stronger focus on crew competency, operational excellence, and technical skills.

One of the key features of SIRE 2.0 is its focus on assessing the competency of crew members in handling complex equipment and operations. Rather than focusing solely on vessel condition, SIRE 2.0 evaluates the practical skills, knowledge, and decision-making abilities of onboard personnel. This ensures that crew members are not only familiar with equipment and operational standards but are also capable of responding effectively to critical situations.

The emphasis on crew competency in SIRE 2.0 aligns with the industry’s shift toward a human-centered approach in safety and operational excellence. This paradigm shift means that training programs must go beyond traditional instruction and delve into more practical, technology-driven skills, which is where simulators like the GDS Ship Engine Room Simulator come into play.

The Role of the GDS Ship Engine Room Simulator in Skill Development

The GDS Ship Engine Room Simulator is an advanced training tool that replicates the engine room environment of modern vessels, providing maritime personnel with hands-on experience in a controlled setting. This simulator covers a wide range of critical systems found in ship engine rooms, including propulsion, auxiliary machinery, electrical systems, and emergency protocols. By using the simulator, crew members can practice their skills, refine their decision-making processes, and gain confidence in handling complex systems without the risks associated with real-world errors.

The simulator allows trainees to engage in realistic scenarios, such as equipment failures, power management issues, and environmental challenges. This training is invaluable in helping them develop deep technical skills needed to respond effectively under pressure. Given the increasing complexity of ship machinery, which often integrates digital and automated controls, such simulator-based training ensures that personnel are well-prepared for both routine and emergency operations.

Developing Deep Technical Skills with SIRE 2.0 and the GDS Simulator

By integrating SIRE 2.0’s competency standards with the practical capabilities of the GDS Ship Engine Room Simulator, maritime training institutions can foster deep tech skills that are essential in today’s high-stakes maritime environment. Training programs using these tools can address various aspects, including:

Operational Readiness: By simulating real-life engine room conditions, the GDS simulator enables personnel to develop an intuitive understanding of systems and processes, which aligns with SIRE 2.0’s focus on crew readiness and situational awareness.

Crisis Management and Decision-Making: The simulator provides scenarios that replicate emergency situations, allowing trainees to practice crisis response, prioritize actions, and make critical decisions under pressure.

Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence.

Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively.

Safety Protocols: Through realistic training scenarios, the simulator reinforces safety protocols, ensuring that personnel can identify and mitigate risks, which is a core component of the SIRE 2.0 inspection program.

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

A new and modern Engine Room Simulator (ERS) has recently been certified by Class NK: It Meets the Online Training Requirements of IMO STCW 2010 and Model Course 2.07

Ship Engine Room Simulator (Ship ERS or SERS™) is certified to meet both IMO STCW 2010 and IMO Model Course 2.07 Exercise Requirements

[block rendering halted]

SERS™ User Manuals

SERS™ is provided with a total of seven (7) user manuals, student exercise workbooks, and documents as complementary to the training practices. All these documents are supplied with a license purchase. Using the SERS™ document set in classroom study also promotes the real-world engine room best work practices of using manuals in operation and management of the engine room machinary and systems.

SERS User Manual Vol I (Software Description) describes the SERS software with the SERS Graphical User Interface (GUI) Panels accessed from the SERS Main Graphical User Interface (GUI) Panel.

SERS User Manual Volume II (Engine Room Operations) includes the operational instructions on how to operate the engine room systems and machinery using the SERS. The training institutions can directly use the contents of this manual in their training procedures. There are also exercises included for use by the trainees for reporting.

SERS User Manual Vol III (Installation & Configuration) describes the installation and the configuration of the software and hardware items. Using this manual, SERS can be configured to run as a Distributed System and the touch screen hardware panels can be assigned to desired GUI panels using the configuration files.

SERS User Manual Volume IV (Instructor’s Manual) includes guides, information, and additional exercise tips for the instructors to utilize SERS in their trainings according to a specific training objective.

Student Exercise Workbooks per IMO Model Course 2.07

Student Exercise Workbook, Volume I: We are already using the simulator in our own training programs and developed Volume I with exercies that meets each objectives of the IMO Model Course 2.07. Volume I exercises includes the Engine Room Operational Level training objectives.

Student Exercise Workbook,Volume II: Volume II exercises includes the Engine Room Management Level training objectives in accordance with IMO Model Course 2.07.

SERS Philosophy Document provides how SERS may be used in a curricula or in engine room simulator training programs. It provides guides for selecting the configuration of the SERS according to the training objectives.

Students can Complete and Report the IMO Model Course 2.07 Exercises with Online Training

IMO Model Course Engine-Room Simulator 2.07 (2017 Edition)

  • Familiarization
  1. Familiarization
    1.1 Plant arrangement
    1.2. Instrumentation
    1.3. Alarm system
    1.4. Controls
  • Operation of plant machinery
    2.1. Operational procedures
    2.2 Operate main and auxiliary machinery and
    systems
    2.3. Operation of diesel generator 20
    2.4. Operation of steam boiler
    2.5. Operation of main engine and associated
    auxiliaries
    2.6. Operation of steam turbo generator
    2.7. Operation of fresh water generator
    2.8. Operation of pumping system
    2.9. Operation of oily water separator
    2.10. Fault detection and measures
  • Maintain a safe engineering watch 19
    3.1. Thorough knowledge of principles to be observed in keeping an engineering watch
    3.2. Safety and emergency procedures; changeover of remote/automatic to local control of all systems
    3.3. Safety precautions to be observed during a watch and immediate actions to be taken in the event of fire or accident, with particular reference to oil systems
    3.4. Knowledge of engine room resource management principles
  • Operate electrical, electronic and control systems
    4.1. Operation of main switch board
    4.2. High-voltage installations
  1. Manage operation of electrical and electronic……

Click here to read more.

Download Brochure [PDF]

We are looking for country/area representatives!

Send your requests to GDS Customer Desk @
Email: info@GlobalDynamicSystems.com
Ph: +90 (546) 585-3969

A Summary of GDS Ship Engine Room Simulator (ERS) charateristics to fit into your training program

With our product, certified by the Nippon Kaiji Kyokai (Class NK) as a Class A (Full Mission) Engine Room Simulator, our purpose is to ensure that the instructors can efficiently utilize this training environment in their Maritime Education and Training (MET) programs and that the trainees can have a productive training.

Developed by GDS Engineering R&D; our product called Ship Engine Room Simulator (SERS);

  • Meets IMO STCW 2010 requirements (with Manila Amendments).
  • Supports training programs using IMO Model Course 2.07 (2017 Edition).
  • Certified by Class NK for meeting both IMO STCW 2010 and Model Course 2.07.
  • The simulator is the digital twin model of a real ship (ref. to User Manuals for complete references and details)
  • Configurable for an individual training study on a Workstation/PC
  • Configurable for group studies with distributed system configuration using distributed computers and large touch-screen panels as well as association of hardware consoles and panels.
  • Provides automated training reports.
  • Includes high voltage training functions
  • Simulates all engine room machinery and systems with over 50 Graphical User Interface (GUI) Panels.
  • All systems are interfaced with all engine room parameters, any change in any parts of the systems is immediately affect the other systems, as in reality!
  • Emphasizes all aspects of the electrical operations with realistic functions.
  • Easy graphical user interfaces that considerably decrease the time for learning and allowing instructors to directly move on to the training objectives.
  • Includes 5 User Manuals, allowing to apply the manuals to training programs directly.
  • Includes Exercise Workbooks for students to come to the simulator center with their study books. When books and user manuals are incorporated, it provides a similar work studies in real ships.
  • Exercise Book I is to use in the Operational Level of STCW 2010 training / competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
  • Exercise Book II is to use in the Management Level of STCW 2010 training/ competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
  • Engine room systems are simulated with high resolution rendered components providing easily readable GUIs on screens, which considerably decrease the learning time and moving on to the training subjects.

For more information, clisk here to read the details of the GDS ERS in our ERS product page. https://www.globaldynamicsystems.com/

or watch our YOUTUBE CHANNEL for more information with some example videos.

Global Dynamic Systems. GDS Systems Engineering Training Programs. Simulators. Engine Room Simulator (ERS). Ship. Electrical Systems Simulator. Physics Lab. UH60. Amphibious. Ground Vehicles. Military Training Programs. MIL-STD-810H Online Training. Environmental Testing of Military Products. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by Class NK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Maritime. Marine Engineering. San Antonio, Texas, Dayton, OH. WPAFB.

Learn about the Global Dynamic Systems (GDS) / GDS Engineering R&D, Inc. Products and Services

Global Dynamic Systems

(GDS Engineering R&D | GDS)

Established in 2014, GDS Engineering R&D offers products and services to the transporation industry.

The vision of GDS started earlier than 2014. Our personnel has been providing engineering services in various defense programs and projects and educational services since 1997. GDS was first estblised in San Antonio, Texas in 2008, the headquarters was then moved to Istanbul, Turkey in 2014.

Established by Dr Ismail Cicek, GDS now provides engineering services and products to the industry with a small team of engineers and managers of seven (7), academic consultants or part time subject matter experts (SMEs) of more than 10, and part-time associated students of five (5).

We provide international educational services, test support, or deliver products in various locations in the world, including the main office located in Istanbul, Turkey.

Our main product is Engine Room Simulator (ERS). All of our products are listed in summary here.
Our main services are training and consultancy services on environmental qualification test standards, such as MIL-STD-810H and RTCA-DO-160G.


MODERN IMO STCW TRAINING SIMULATORS

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.

We develop and provide engine room simulator to the maritime schools, institutions, and companies. Our modern and effective Engine Room Simulator (ERS), certified by ClassNK in 2020, is already in use by many institutions around the world. Click here to read more about the GDS simulator products. Our simulator development story involves the collaborations with universities, industrial firms and governmental or non-governmental organizations.

Maritime Simulator Products

GDS provides Ship Engine Room Simulator product called SERS.
Ship Engine Room Simulator
(SERSTM)

SERSTM is a certified, advanced, and Full Mission engine room simulator that can be used in both laboratory and distributed team environment training.
Click to read more about SERSTM.

GDS Ship Electrical Systems Sİmulator, Engine oom Simulator ERS Distributed System Full mission Panels
Ship Electrical Systems Simulator (SESSTM)

SESSTM is a software simulation of all electrical systems in a typical engine room. It can be used as a laboratory software or in-class demonstration software.
Click to read more about SESSTM.

GDS Ship High Voltage Simulator Sample Screen View IMO Model Course
Ship High Voltage Training Simulator (HVTSTM)

HVTSTM is a software, which can be used in the training of high voltage operations onboard a ship, such as Vacuum Circuit Breaker, Transformer, and high power loading to the main bus.
Click to read more about HVTSTM.

GDS provides Virtual Physics Labs Product called VPL.
Virtual Physics Labs
(VPLTM)

VPLTM is software, which supports the laboratory sessions of Physics I and and II experiements, which are mechanical and electrical experiments, respectively.
Click to read more about VPLTM sotware.

ENVIRONMENTAL TEST TRAINING FOR YOUR SUCCESS!

With years of experience in developing defence and aviations systems and environmental test experience, GDS provides training on defense, aviation, and industry test standards. Click here to read more about the details of the systems engineering and test training subjects.

Mitigate your risks before they actually happen MIL-STD-810H Training STD-461 RTCA-DO-160G (1)

Training Programs
Systems Engineering | Online or Onsite | International

GDS provides MIL-STD-810H training, online or onsite.
MIL-STD-810H training program emphesizes the tailoring methodologies for qualification testing of specific military equipment and products.
Click to read more about MIL-STD-810 training program.
GDS provides RTCA-DO-160G 
training program. Two and a half days of focused training on environmental and EMI/EMC qualification testing of airborne equipment.
RTCA-DO-160G training program provides two and a half days of focused training on environmental and EMI/EMC qualification testing of airborne equipment.
Click to read more about DO-160 training.
GDS provides MIL-STD-461G and MIL-STD-464D training, online or onsite.
MIL-STD-461G training program includes the selection of test methods for platforms, test requirements (w/MIL-STD-464), test procedures, test report reviews, design ideas, and test process.
Click to read more about MIL-STD-461G training.
GDS Systems Engineering Training Programs Banner
GDS provides other training programs, including:
– MIL-STD-704F
– Req. Management
– Project Management
Click to display information about all of our training courses.

ENVIRONMENTAL TEST, ANALYSIS AND SUPPORT SERVICES

We also provide environmental testing services including the testing of your products to MIL-STD-810H, RTCA-DO-160G, and other military and industry standards. Some of which are vibrations, mechanical shock, low/high temperature, humidity, corrosion (salt spray, salt fog), and drop. We can help reduce your final issues in your product development through experience sharing, testing, or analysis.

Online Training on MIL-STD-810H, RTCA-DO-160, MIL-STD-461G, MIL-STD-704 Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Training Led by a Live US-based Sr. Instructor: Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. FAA Requirements Management. Efficient way of learning. Continues Education. Class Material.

We aim to support your business goals in the advancement of the human prosperity and healthy living.

GDS TEAM

We also prodive support to the industrial organisations in their product development or research projects by means of training, consultacies or services.

Our capabilities in desing and engineering solution projects, are, in summary:

  • Online Training Courses: We provide online training courses on Systems Engineering related topics, such as MIL-STD-810H Product Testing, RTCA-DO-160G Product Testing, MIL-STD-461G EMI/EMC Testing.
  • Mechanical Design: Solid modeling, parts and components desing, system design (i.e., engine parts, pipes, etc) engineering system design (cooling system, hyraulic/pneumatic systems, geabox design, etc.), surface modeling, and so on.
  • Engineering Analysis: Computational Fluid Dynamics (CFD), Thermodynamics, Heat Transfer, Finite Element Analysis, Fluid-Structure Interaction, Vibration, Shock, and Sound Analysis, Impact Analysis, etc.
  • System Simulations: Our firm is developing engine simulators, in which both diesel engine processes and systems and subsystems (turbocharger, air cooler, manifolds, etc.) are modeled and simulated.
  • Use of the Ship Engine Room Simulator:  Our engine room simulator is complete for educational use. However, it also has high level of research capabilities for use by ship operating agencies for testing and understanding their systems’ behaviors. Our simulator is basically a “twin modal” of your container type ship.
  • Machine Learning: With a through study of your plant parameters, we can propose and develop useful periodic reports on how to manage your systems better with problems arising before they actually occur.

GDS Engineering has the infrastructure, knowledge, personnel, and infrastructure and has taken part in international projects or to led projects. GDS has its own Project Management System (GDS-PMS) as well as Quality Management System (GDS-QMS) that help produce various tools and templates for use in project or quality management including risk-based management methods.

Training Registration Request Form

Please fill out the following form for asking your question or with a registration request. Thank you for your interest in our training programs.

[contact-form-7 id=”229″ title=”Training Request Form 1″]

Our firm, consisting of PhDs, senior engineers, and highly skilled managers, are experienced in all phases of product development and project management; requirements, research, planning, design, analysis, testing, certification, and personnel training.  We provide engineering and services for your success in your project and company goals.

We utilize engineering software and tools depending on the Project requirements, when needed, for example: -3D CAD and CAM packages: AutoCAD, SolidWorks, Autodesk Inventor -Engineering Analysis and Optimization: ANSYS Fluent and ANSYS Packages, Autodesk Inventor -System Simulation: CATIA -GT-Power Engine Analysis and Simulation Software – SIL and HIL Simulations -LSTC LS Dyna -National Instruments LabVIEW, LabVIEW RT and NI DAQ/Control Hardware -Matlab, C/C++, and other software when needed.

We also develop our own engineering modeling and analysis programs. For example, we have our mathematical models developed for the analysis and simulation of diesel engines. This module helps testing of diesel engines and comparing the results against the simulated baseline system.

Energy Management in Marine Engineering: We understand and can model your marine engineering platform for identifying the deficiences for energy management for your cost saving.

Autonomous Surface Vehicle (ASV): Flipper

Our current ASV, Flipper, is a catamaran model and has the remote control capability.  When complete, Flipper will have the following 3 modes:

-Remote Control

-Autonomous Control Mode

-Safety Mode (Return Home)

In autonomous mode, the ASV will execute the mission plan.  It will transmit the video and recevie and transmit the control and status data.

Dr. İsmail Çiçek

Dr İsmail Çiçek 1990 yılında İstanbul Teknik Üniversitesi (İTÜ) Gemi Makineleri İşletme Mühendisliği Bölümünden mezun oldu. Akademik dünya ve endüstrinin değişik alanlarındaki çalışmalarıyla geniş tecrübe sahibi olan İsmail Çiçek, Texas Tech Üniversitesi Makine Mühendisliği Bölümünden 1995’de Yüksek Lisans 1999’da doktora diplomalarını aldı. Dr Çiçek yüksek lisans çalışmasında dizayn ve kontrol sistemleri, doktora çalışmasında ise mekanik titreşimler ve kontrol sistemleri konularında çalışmalar yaptı.

Dr İsmail Çiçek 1999-2003 yılları arasında İTÜ Denizcilik Fakültesi Gemi Makineleri İşletme Mühendisliği Bölümünde Öğretim Üyesi ve Bölüm Başkan Yardımcısı olarak görev yaptı. Bu süre içerisinde Dr Çiçek İTÜ Simülatör Merkezinin kurulması, International Association of Maritime Universities (IAMU) birliğinin oluşturulması, ve The State University of New York (SUNY) ile İTÜ Denizcilik Fakültesi arasında çift diplomalı lisans programının gerçekleştirilmesi çalışmalarında bulundu.

1997 yılından günümüze Dr. İsmail Çiçek ABD savunma sektöründe proje yapan şirketlerde ve ABD Hava Kuvvetleri Komutanlığı bünyesinde değişik program ve projelerde uzun yıllar (toplam 15 yıl) mühendis ve lider olarak çalışmalar yürüttü. Dr. Çiçek’in savunma sanayi deneyimi Coğrafi Bilgi Sistemlerini kullanan İnsansız Hava Aracı ve Sistemleri geliştirilmesi ve US Marine Corps’a teslimi, sabit kanat uçakların modernizasyonu (C-5, C-17, C-130 E/H/J, vb), askeri cihazlarının uçak, hava ve deniz araçlarında kullanılabilmesi için ortama uyumluluk testleri, insansız hava araçları için dizel motor geliştirilmesi ve uygulanması gibi önemli çalışmaları içermektedir.

Dr Çiçek, Raytheon ve Texas Tech Üniversitesi işbirliği ile hazırlanan Sistem Mühendisliği doktora programında Entegre Ürün Verifikasyon ve Validasyon dersini verdi. Titiz, enerjik ve mükemmel takım çalışması göstergeleri dolayısıyla İsmail Çiçek’e; Terra Health tarafından, 2009 yılında Mükemmel Mühendislik ve 2010 yılında Müşteriye Hizmette Üstünlük ödülleri, ABD Hava Kuvvetleri Komutanlığı’nca çok sayıda ödül ve teşekkür mektupları takdim edildi.
Bir çok bilimsel ve mühendislik yayınları olan ve uluslararası konferans etkinlikleri bulunan Dr. İsmail Çiçek halen ASTM, ASME, IEEE ve ISO gibi uluslararası profesyonel kuruluşlarda aktif üye olup, askeri ve sivil standartlar geliştiren komitelerde çalışmalar yapmaktadır. Dr. Çiçek’in uluslararası sivil ve askeri standartlar konusunda uygulamalı tecrübeleri bulunmaktadır.

Dr. İsmail Cicek, 2012 yılından itibaren İTÜ Denizcilik Fakültesi’nde Öğretim Üyesi olarak görev yapmakta, Otomatik Kontrol Sistemleri, Gemi Makine Dairesi Simülatörleri, Gemi Kontrol Sistemleri, Mekanik Titreşimler ve benzeri dersler vermektedir.  Dr. İsmail Çiçek Üniversite-Sanayi işbirliklerine önem vermektedir, bu sebeple de IMSO, TÜLOMSAŞ, MILPER, FEMSAN, ve benzeri kurum ve kuruluşlar ile birlikte çalışmalar da yapmıştır.