Future Sailors Protect the Marmara Sea with the MarBalast Project!

The “Raising Awareness on Marmara Sea Ballast and Bilge Pollution” project, supported by European Union Projects, draws attention to the environmental threats facing the Marmara Sea and aims to raise awareness among future sailors.
Environmental pollution caused by ballast and bilge water wastes originating from ships poses a serious threat to the Marmara Sea ecosystem. Although MARPOL and IMO Environmental Pollution rules aim to prevent this pollution, human factors and a lack of awareness can cause problems to continue.
At this point, the MarBalast Project was carried out under the consultancy of Assoc. Prof. Dr. Ismail Cicek aims to raise awareness through training for maritime students. Within the scope of the “Raising Awareness on Marmara Sea Ballast and Bilge Pollution” project, supported by European Union initiatives, highlights the environmental threats facing the Marmara Sea and aims to educate future sailors.
Pollution resulting from ship ballast and bilge water waste poses a significant threat to the Marmara Sea ecosystem. Although MARPOL and IMO environmental regulations are designed to prevent this pollution, human factors and a lack of awareness can lead to ongoing issues.
The MarBalast Project, guided by Assoc. Prof. Dr. Ismail Cicek seeks to raise awareness among maritime students through specialized training. As part of this project, the project team will organize conferences and workshops on maritime management and the importance of pollution prevention at various maritime faculties and high schools across Turkey.The project will last eight months and be executed by the Istanbul Technical University Maritime Technologies Club. Through the MarBalast Project, future sailors will learn about environmentally responsible maritime practices and contribute to protecting the Marmara Sea.
The main objectives of the project are:

  • To inform maritime students about the environmental damage caused by ships.
  • To emphasize the importance of adhering to international maritime regulations such as MARPOL and IMO.
  • To raise awareness aimed at minimizing environmental damage stemming from human activities.
  • To cultivate environmentally conscious generations of future sailors.

The MarBalast Project promises hope for the future of the Marmara Sea!

SERS™4Team Optimizing the Engine Room Simulator Configurations using GDS SERS™. The GDS Ship Engine Room Simulator Team System (SERS™4Team) is a cutting-edge maritime simulation platform designed to enhance collaborative teamwork in the maritime industry. Specifically developed to meet the IMO STCW 2010 Standards for Training and Certification of Watchkeeping, including Model Course 2.07 (2017 Ed.), SERS™4Team provides comprehensive marine engineering training through an immersive full mission engine room simulator (ERS) environment.   SERS™4Team focuses on IMO Engine Room Resource Management principles, enabling trainees to develop critical skills in communication, decision-making, and task allocation within a realistic engine room setting. The system covers all aspects of engine room operations, from ship electrical systems to main propulsion, and offers training at both operational and management levels.   Furthermore, SERS™4Team facilitates in-depth assessment and evaluation of trainee performance, allowing instructors to identify strengths and weaknesses. Advanced tools for root-cause analysis and troubleshooting enable trainees to understand and learn from their mistakes, ultimately improving their technical skills and problem-solving abilities. By incorporating scenarios focused on energy efficiency, SERS™4Team promotes best practices for optimized fuel consumption and reduced environmental impact. This ensures that trainees are not only technically proficient but also environmentally responsible. Sources and related content

Optimizing Maritime Engineering Training: A Deep Dive into the SERS™4Team Simulator

Our new paper about SERS™ and ERM Training has been published in the Proceedings of IMLA 29.

Paper Reference Information (APA):

Ismail Cicek and Burak Cavusoglu (2024). An Optimized Ship Engine Room Simulator Configuration for Effective Engine Room Resource Management Training. Proceedings of the International Maritime Lecturers Association (IMLA) Conference. Pages 36-50. Conference held on September 25-28, Istanbul, Turkey.

Download our Paper in PDF File:

CavusogluCicek-An-Optimize-Shipr-Engine-Room-Simulator-Configuration-for-ERM-training

As part of the IMLA 2024 Conference, the new engine room simulator, called Ship Engine Room Simulator (SERS™) 4Team, SERS™4Team, has been demonstrated by Istanbul Technical University.

There was a great interest in the SERS™4Team demonstrations at the GDS booth and demonstrations at the Istanbul Technical University.

There was a great interest in the SERS™4Team demonstrations at the GDS booth and demonstrations at the Istanbul Technical University.

Optimizing Maritime Engineering Training: A Deep Dive into the SERS™4Team Simulator

The International Maritime Lecturers’ Association (IMLA) 2024 Conference provided a compelling platform for showcasing advancements in maritime education and training. Among the highlights was the demonstration of Istanbul Technical University’s latest innovation: the Ship Engine Room Simulator (SERS™) 4Team. This cutting-edge simulator offers a significant leap forward in training maritime engineers, addressing critical challenges and aligning with contemporary industry standards.

The SERS™ 4Team distinguishes itself through its robust capabilities for both research and training, focusing on engine performance management within a collaborative teamwork environment. This emphasis on collaborative teamwork is crucial, reflecting the complex and interdependent nature of modern ship engine rooms. The simulator facilitates training in a full mission training configuration, allowing multiple trainees to interact within a virtual engine room environment, mirroring real-world operational dynamics. This approach directly addresses the need for effective communication, coordination, and shared decision-making in critical situations.

A key strength of the SERS™ 4Team lies in its ability to simulate a wide array of scenarios, including those with potentially catastrophic consequences. Notably, the simulator can recreate events leading to a blackout of the ship, a scenario of paramount concern in maritime safety. By allowing trainees to experience and respond to such high-stakes situations in a controlled environment, the SERS™ 4Team fosters crucial decision-making skills and enhances preparedness for real-world emergencies. This focus on critical scenarios directly supports the development of competencies outlined in the IMO STCW 2010 Convention, ensuring that trainees are equipped to handle complex and challenging operational conditions.

Furthermore, the SERS™ 4Team is designed with cost-effectiveness in mind. By providing a virtual training environment, the simulator reduces the reliance on expensive and potentially hazardous onboard training, offering a more sustainable and accessible approach to maritime education. This cost-effectiveness does not compromise the quality of training; on the contrary, the simulator offers a controlled and repeatable learning experience, allowing trainees to practice complex procedures and respond to critical scenarios multiple times, enhancing their understanding and proficiency.

The simulator’s design explicitly incorporates exercises and scenarios derived from the IMO Model Course 2.07, ensuring that training aligns with internationally recognized standards for marine engineering education. This alignment underscores the simulator’s commitment to delivering high-quality, standardized training that meets the evolving demands of the maritime industry. By integrating the principles of Collaborative Teamwork within a Full Mission Training Configuration, and by addressing critical scenarios such as ship blackouts, the SERS™ 4Team offers a powerful tool for optimizing maritime engineering training and enhancing maritime safety, fully supporting the development of IMO STCW 2010 Competencies. This innovative approach to training promises to significantly contribute to the development of competent and resilient maritime engineers.

Engine Room Simulator (ERS), Marine Engineering Training, Maritime Simulation, IMO STCW 2010 Standards for Training and Certification of Watchkeeping, Model Course 2.07 (2017 Ed.), Ship Electrical Systems, Full Mission, Assessment, Evaluation, Root-Cause Analysis, Troubleshooting, Performance, Operational Level, Management Level, Energy Efficiency, Online Training
Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms. Root Cause Analysis. Root Cause Flow Charts. Collision Accidents. Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis. MCA. , Fault tree method, Multiple correspondence analysis, Collision Regulation, CollReg. Human Error. The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

A New Study Published in the Ocean Engineering Journal: “Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis”

Journal Article:

Ocean Engineering, Volume 245, 1 February 2022, 110514

Hasan Ugurlu, Ismail Cicek, Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis, Ocean Engineering, Volume 245, 2022, 110514, ISSN 0029-8018,
https://doi.org/10.1016/j.oceaneng.2021.110514.
(https://www.sciencedirect.com/science/article/pii/S0029801821017923)

Authors

Hasan Uğurlu and Ismail Cicek

Highlights

• 513 ship collision accidents for all ship types, dated since 1977, were studied.
• 39 primary causes for collisions were examined with fault tree analysis.
• Importance and probability values for each primary cause are presented.
• Results indicate which COLREG Rules are violated the most.
• Recommendations are provided for reducing the potential collision accidents.

Abstract

Our research study indicates that, over the past few decades, the expected decrease in the number of maritime accidents has not occurred. The statistics show the collision and contact types of marine accidents have always been the most frequent. Primary causes that contribute to ship collisions were collected from 513 collision accidents reported since 1977, which is the date the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) came into effect. The root causes of ship-to-ship collisions were determined statistically. Qualitative and quantitative analyses were carried out using the Fault Tree Analysis (FTA). This provided the probability and importance of the primary causes contributing to the ship collision accidents and defined minimal cut sets. Results show that the violation of the COLREG Rules is the most important and effective factor for collision accidents. Therefore, further analysis was conducted and the results showed which type of COLREG Rules mostly violated statistically. The primary causes were also examined by Multiple Correspondence Analysis, and it was determined that maneuvering and perception errors were the most effective factors in collision accidents. The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

Read more at Ocean Engieering journal…

Keywords

Maritime accidents, Ship collision, Fault tree method, Multiple correspondence analysis, Collision regulation, Human error

DOI: https://doi.org/10.1016/j.oceaneng.2021.110514

Why is this Paper Important?

The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

  • 513 ship collision accidents for all ship types, dated since 1977, were studied.
  • 39 primary causes for collisions were examined with fault tree analysis.
  • Importance and probability values for each primary cause are presented.
  • Results indicate which COLREG Rules are violated the most.
  • Recommendations are provided for reducing the potential collision accidents.
Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Maritime Investigation Reports Involving Man-Over-Board (MOB) Casualties: A Methodology for Evaluation Process

Turkish Journal of Maritime and Marine Sciences, Vol: 5 No: 2 (2019) 141-170.

Authors

Orhan Gönel and İsmail Çiçek

Abstract

Flag states must issue their maritime investigation reports in accordance with the International Maritime Organization (IMO) circulars with the inclusion of ‘lessons learned’ items from recorded accidents or incidents. To identify the root cause of an event, there must be enough detail of information about the investigated event presented in reports. The information included in reports may help identifying the procedural deficiencies or technical challenges. Considering the Man-Over- Board (MOB) events as a sub group of maritime accident  nvestigations, authors systematically reviewed over 100 reports containing MOB events in this study.

In this study, reports are reviewed and major differences in formats as well as level and type of information are recorded. A systematic methodology for reviewing and reporting the overall information retrieved from maritime accident reports is presented. To cover all information from reviewed reports, 113 information items are identified. An associated standard form is developed for use in extracting information from all investigation reports. Enabling the data collected systematically from reports, issued by the world maritime accident reporting states and agencies, and successively populated into a database for overall analysis, this form is called “Maritime MOB Events Investigation Form (MEI Form)”. This paper presents the content of the MEI Form and demonstrates the methodology of use for retrieving, formatting and analyzing the information from the MOB investigation reports using case examples.

Click to see published paper for more reading.

Keywords

Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Highlights

  • A Form was developed and proposed for use in accident investigations.
  • Using the form and entry into a database, maritime accident investigation data is digitized.
  • Statistical Data for MOB Events were obtained and presented.
  • results provide useful data for having lessons learned items.
  • Provides a methodology for root-cause of MOB events.
  • Lessons learnt process is automated.
Global Dynamic Systems. GDS Systems Engineering Training Programs. Simulators. Engine Room Simulator (ERS). Ship. Electrical Systems Simulator. Physics Lab. UH60. Amphibious. Ground Vehicles. Military Training Programs. MIL-STD-810H Online Training. Environmental Testing of Military Products. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by Class NK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Maritime. Marine Engineering. San Antonio, Texas, Dayton, OH. WPAFB.

Artificial Intelligence in Maritime Industry

Today, the use of more machinery reduces manpower, with the development of technology. Thus, the maritime sector leaves behind its old functioning. With the development of artificial intelligence, it is aimed to minimize human need and error on ships.

Japan-based Mitsui O.S.K. Lines (MOL) is partnering with Bearing, a Silicon Valley-based artificial intelligence technology startup, to increase efficiency in the shipping industry. Bearing company produces technology in the maritime sector based on the data collected globally. These AI-supported models, which contain navigational data for ships such as ship speed, trim, main engine operation, weather and sea conditions, allow metrics such as fuel consumption to be estimated with absolute accuracy, even without the ship’s design parameters. Apart from this, autonomous ships are also becoming common. In 2018, Rolls-Royce and Finnish ferry operator Finferries introduced a fully autonomous ferry called the Falco. The approximately 50 meters long ferry is designed to cover short distances. Another high-profile project is the Yara Birkeland, a container ship measuring 80 metres in length that is designed to transport fertiliser on autonomous journeys powered fully by electricity.

Such advances in technology are leading to revolutionary changes in the shipping industry. We must adapt to these changes and do our work with this in mind.