Prevention of Maritime Accidents. Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms. Root Cause Analysis. Root Cause Flow Charts. Collision Accidents. Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis. MCA. , Fault tree method, Multiple correspondence analysis, Collision Regulation, CollReg. Human Error. The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

Categories of Maritime (Ship) Accident Types and Research Studies

Categories of Maritime (Ship) Accident Types

Lloyds Maritime Information Services (LMIS) has a casualty database which divides the maritime (ship) accidents into the following categories:

1. Foundered – includes ships which sank as a result of heavy weather, leaks, breaking into two, etc, and not as a consequence of other categories such as collision etc.

2. Missing vessel – includes ships that disappeared without any trace or witnesses knowing exactly what happened in the accident.

3. Fire/explosion – includes ships where fire/explosion is the first event reported, or where fire/explosion results from hull/machinery damage, i.e. this category includes fires due to engine damage, but not fires due to collision etc.

4. Collision – includes ships striking or being struck by another ship, regardless of whether under way, anchored or moored. This category does not include ships striking underwater wrecks.

5. Contact – includes ships striking or being struck by an external object, but not another ship or the sea bottom. This category includes striking drilling rigs/platforms, regardless of whether in fixed position or in tow.

6. Wrecked/stranded – includes ships striking the sea bottom, shore or underwater wrecks.

7. War loss/hostilities – includes ships damaged from all hostile acts.

8. Hull/machinery damage – includes ships where the hull/machinery damage is not due to other categories such as collision etc.

9. Miscellaneous – includes lost or damaged ships which cannot be classified into any of the categories 1 through 8 due to not falling into any of the categories above or due to lack of information (e.g. an accident starting by the cargo shifting would typically be classified as miscellaneous).

Above is also referenced in Wartsila website. Man Over Board (MOB) event, a person falling into water, is not referenced in the above listing.

 

However;

IMO accidents website, Global Integrated Shipping Information System (GISIS), refers to Man Over Board as another accident type, which may end with a death or injury. We would like to refern the following two of our publications for the details of MOB and Collision accident types:

Title: Maritime Investigation Reports Involving Man-Over-Board (MOB) Casualties: A Methodology for Evaluation Process, Turkish Journal of Maritime and Marine Sciences, Vol: 5 No: 2 (2019) 141-170. Authors: Orhan Gönel and İsmail Çiçek. Click this link for more information...

Title: Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis, Ocean Engineering, Volume 245, 2022, 110514, ISSN 0029-8018. Authors: Hasan Ugurlu and Ismail Cicek. Click this link for more information...

 

With these studies, we categorize the maritime investigation reports into the following groups, which is more inline with the  International Maritime Organization (IMO) ‘Casualty Investigation Code’ (CI Code) (2008):

Ship:

  • Grounding/Stranding 
  • Collision/Contact/Allision
  • Fire/Explosion
  • Flooding/Foundering
  • Capsizing/Listing
  • Damage to ship or equipment

Crew:

  • Man-Over-Board (MOB)
  • Injury/Death
Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms. Root Cause Analysis. Root Cause Flow Charts. Collision Accidents. Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis. MCA. , Fault tree method, Multiple correspondence analysis, Collision Regulation, CollReg. Human Error. The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

A New Study Published in the Ocean Engineering Journal: “Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis”

Journal Article:

Ocean Engineering, Volume 245, 1 February 2022, 110514

Hasan Ugurlu, Ismail Cicek, Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis, Ocean Engineering, Volume 245, 2022, 110514, ISSN 0029-8018,
https://doi.org/10.1016/j.oceaneng.2021.110514.
(https://www.sciencedirect.com/science/article/pii/S0029801821017923)

Authors

Hasan Uğurlu and Ismail Cicek

Highlights

• 513 ship collision accidents for all ship types, dated since 1977, were studied.
• 39 primary causes for collisions were examined with fault tree analysis.
• Importance and probability values for each primary cause are presented.
• Results indicate which COLREG Rules are violated the most.
• Recommendations are provided for reducing the potential collision accidents.

Abstract

Our research study indicates that, over the past few decades, the expected decrease in the number of maritime accidents has not occurred. The statistics show the collision and contact types of marine accidents have always been the most frequent. Primary causes that contribute to ship collisions were collected from 513 collision accidents reported since 1977, which is the date the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) came into effect. The root causes of ship-to-ship collisions were determined statistically. Qualitative and quantitative analyses were carried out using the Fault Tree Analysis (FTA). This provided the probability and importance of the primary causes contributing to the ship collision accidents and defined minimal cut sets. Results show that the violation of the COLREG Rules is the most important and effective factor for collision accidents. Therefore, further analysis was conducted and the results showed which type of COLREG Rules mostly violated statistically. The primary causes were also examined by Multiple Correspondence Analysis, and it was determined that maneuvering and perception errors were the most effective factors in collision accidents. The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

Read more at Ocean Engieering journal…

Keywords

Maritime accidents, Ship collision, Fault tree method, Multiple correspondence analysis, Collision regulation, Human error

DOI: https://doi.org/10.1016/j.oceaneng.2021.110514

Why is this Paper Important?

The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

  • 513 ship collision accidents for all ship types, dated since 1977, were studied.
  • 39 primary causes for collisions were examined with fault tree analysis.
  • Importance and probability values for each primary cause are presented.
  • Results indicate which COLREG Rules are violated the most.
  • Recommendations are provided for reducing the potential collision accidents.
Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Maritime Investigation Reports Involving Man-Over-Board (MOB) Casualties: A Methodology for Evaluation Process

Turkish Journal of Maritime and Marine Sciences, Vol: 5 No: 2 (2019) 141-170.

Authors

Orhan Gönel and İsmail Çiçek

Abstract

Flag states must issue their maritime investigation reports in accordance with the International Maritime Organization (IMO) circulars with the inclusion of ‘lessons learned’ items from recorded accidents or incidents. To identify the root cause of an event, there must be enough detail of information about the investigated event presented in reports. The information included in reports may help identifying the procedural deficiencies or technical challenges. Considering the Man-Over- Board (MOB) events as a sub group of maritime accident  nvestigations, authors systematically reviewed over 100 reports containing MOB events in this study.

In this study, reports are reviewed and major differences in formats as well as level and type of information are recorded. A systematic methodology for reviewing and reporting the overall information retrieved from maritime accident reports is presented. To cover all information from reviewed reports, 113 information items are identified. An associated standard form is developed for use in extracting information from all investigation reports. Enabling the data collected systematically from reports, issued by the world maritime accident reporting states and agencies, and successively populated into a database for overall analysis, this form is called “Maritime MOB Events Investigation Form (MEI Form)”. This paper presents the content of the MEI Form and demonstrates the methodology of use for retrieving, formatting and analyzing the information from the MOB investigation reports using case examples.

Click to see published paper for more reading.

Keywords

Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Highlights

  • A Form was developed and proposed for use in accident investigations.
  • Using the form and entry into a database, maritime accident investigation data is digitized.
  • Statistical Data for MOB Events were obtained and presented.
  • results provide useful data for having lessons learned items.
  • Provides a methodology for root-cause of MOB events.
  • Lessons learnt process is automated.