Archieves: Posts and Pages Archieved under GDS Engineering R&D website

Archieves

Underwater radiated noise (URN) of your platform

The increase in shipping activity globally has resulted in an increased awareness of impacts on the marine environment. Effects of noise pollution, especially on marine life, have become highly prominent. Marine life is extremely sensitive to noise pollution. Due to their extreme reliance on underwater sounds for basic life functions like searching for food and mate and an absence of any mechanism to safeguard them against it, underwater noise pollution disrupts marine life (Singla, 2020). In short, marine animals depend on sound to live, making and listening to it in various ways to perform various life functions (US Bureau of Ocean Energy Management, 2014).

Noise travels much more in water, covering greater distances than it would do on land while travelling through air. Underwater sound has both pressure and particle motion components and hearing can be defined as the relative contribution of each of these sound components to auditory detection (Popper AN, 2011). Sounds radiated from ships are among the underwater noise sources. Among shipborne Underwater Radiated Noise (URN) sources are the following:
● Propeller’s rotational turn and the blades hitting to water flow lines
● Propeller’s cavitation
● Ship hull structure’s interaction water (fluid-structure interaction)
● Mechanical noises from onboard machinery

All of these noise sources are radiated to underwater from ships, especially when the ship speed is at higher rates, i.e. above 15 knots.

When a Powership is considered, out of the 4 aforementioned noises, only mechanical noise sources are of concern as there are no noises that emanate from the other three sources because the Powership is docked. Mechanical onboard noises are still of concern and therefore need to be evaluated and tested for the assessment of their potential negative effects to marine life.

At GDS Engineering R&D, Inc., we provide engineering and research services for investigating the ship underwater noise emittance and limitations.

We have established a group of engineers and academicians, called “GDS Team”, to conduct for doing an initial research on the subject. Academic staff is selected from Istanbul Technical University (ITU) Marine Equipment Test Center (METC), which is a directorate established under the ITU Rectorate. Also, GDS Engineering R&D is established in the university research park with the permission of ITU Rectorate by laws. Consisting of both academic and sectoral subject matter experts, the GDS Team hereby submits this research and evaluation paper.

Our study reflects that there has been an increase in academic and scientific studies, in the last decade, with regards to shipborne noises and their effect on marine life. Our research indicates that the International Maritime Organization (IMO) Marine Environment Protection Committee has also held a subject meeting in 2019 and published a report (IMO MEPC 74/INF.28, 2019). The IMO report indicates that there is no requirement or a strong guidance document yet published with regard to Underwater Radiated Noise (URN):

“The report provides an overview of URN issues but is not intended as a complete guide to this very complex subject.” (IMO MEPC 74/INF.28, 2019).

Similar studies show that there are no standard thresholds established and currently required as design criteria for commercial ships.

This research study focuses on the following main areas:

  • Overview of previous studies on the subject.
  • Evaluation of Shipborne Machinery Design and Noise Radiation using computer simulations.
  • Evaluation of Karpowership design and considerations made countermeasures taken for the vibrations and noise including URN, using the state-of-the-art noise reduction and isolation techniques.

Animals will only respond directly to sounds they can detect. Marine animals depend on sound to live, making and listening to it in various ways to perform various life functions (US Bureau of Ocean Energy Management, 2014). The effect of underwater noise pollution is more painful than anything else for the animals. Most animals are alarmed by the alien sounds. The deaths can occur due to hemorrhages, changed diving pattern, migration to newer places, and damage to internal organs and an overall panic response to the foreign sounds. There is also a disruption in normal communication between marine animals as a result of underwater noise pollution. This means animals prone to noise pollution are unable to call their mates, look for food or even make a cry for help under such circumstances (Singla, 2020).

Figure 1 shows the frequency ranges produced by various marine mammal groups (US Bureau of Ocean Energy Management, 2014). The relative noise frequency bands created by various human noise sources are indicated. It also shows that all human made noises that affect various undersea life with the respective frequency ranges. Due to this fact shown with this figure along with similar studies and reports discusses in the upcoming sections, there is more attention to do research on marine mammals and industrial noises to understand how these noises affect the mammal groups.

Figure: Frequency Range of Sounds Generally Produced by Different Marine Animal Groups Shown Relative to Major Human Noise Sources (US Bureau of Ocean Energy Management, 2014)
.

Behavioral responses of marine mammals to noise are highly variable and dependent on a suite of internal and external factors. Internal factors include (Ocean Noise and Marine Mammals, 2003)

  • individual hearing sensitivity, activity pattern, and motivational and behavioral state at time of exposure;
  • past exposure of the animal to the noise, which may have led to habituation or sensitization;
  • individual noise tolerance; and
  • demographic factors such as age, sex, and presence of dependent offspring.

External factors include

  • non-acoustic characteristics of the sound source, such as whether it is stationary or moving,
  • environmental factors that influence sound transmission,
  • habitat characteristics, such as being in a confined location, and
  • location, such as proximity to a shoreline.

Many marine animals like the fish (rockfish, herring, san eel, cod, blue whiting etc.) show signs of extensive damage to their ears upon exposure to seismic air guns even up to several kilometers. Exposure to noise during embryonic stage increases sensitivity of fish to noise impact, increasing the mortality rates at time of birth and development of genetic anomalies. The migration to new areas not only affects the marine diversity balance but indirectly affects humans too. A decreased catch in many fish species like herring, cod and blue whiting especially in areas susceptible to noise pollution from ships has been noticed (Singla, 2020).

Sensitivity of various marine animals to ocean noise pollution is varying. While cetaceans like whales and dolphins may show a greater resistance, soft shelled species like mollusks, prawns, fish, etc. are much more sensitive. However, it is important to note that as many as 24 cetacean species have shown negative effects of noise pollution in the ocean. In all about 55 marine species have been noted to have suffered due to exposure to sound of varying frequencies. These include sperm whale, grey whale, mink whale, pygmy sperm whale, killer whale, sea bass, pink snapper, goldfish, cod, haddock, bluefin tuna, squid, lobster, brown shrimp etc. (Singla, 2020).

Mass stranding of giant squids in coastal areas of Spain between 2001 and 2003 showed how grave the implications of noise pollution in marine life can be. These beachings can occur merely hours after such an exercise.  Dislocation or movement of marine animals to newer locations is also one of the many ocean noise pollution effects. While this may seem like a survival mechanism, studies conducted for a follow up on these animals isn’t that promising as most animals fail to acclimatize in the new environment, not to mention loss of diversity in many regions (Singla, 2020).

Sound is an extremely efficient way to propagate energy through the ocean, and marine organisms have evolved to exploit this property. Fish utilize sound for navigation and selection of habitat, mating, and communication (Bass & McKibben, 2003) (Simmonds & MacLennan, 2008).

There is a reason why the ocean is called the ‘silent world’. In this world, where sounds of their own exist, there is no room or rather any need for foreign sounds to breach the harmony of their world. Studies are being conducted to understand the effects of noise pollution on marine life in a much better way. But until a safe mechanism can be thought of which will ensure that marine animals do not continue to commit as much as mass suicide due to human errors, safety through prevention is out best shot at keeping the sanctity of this ‘silent world’ intact (Singla, 2020).

A Summary of GDS Ship Engine Room Simulator (ERS) charateristics to fit into your training program

With our product, certified by the Nippon Kaiji Kyokai (Class NK) as a Class A (Full Mission) Engine Room Simulator, our purpose is to ensure that the instructors can efficiently utilize this training environment in their Maritime Education and Training (MET) programs and that the trainees can have a productive training.

Developed by GDS Engineering R&D; our product called Ship Engine Room Simulator (SERS);

  • Meets IMO STCW 2010 requirements (with Manila Amendments).
  • Supports training programs using IMO Model Course 2.07 (2017 Edition).
  • Certified by Class NK for meeting both IMO STCW 2010 and Model Course 2.07.
  • The simulator is the digital twin model of a real ship (ref. to User Manuals for complete references and details)
  • Configurable for an individual training study on a Workstation/PC
  • Configurable for group studies with distributed system configuration using distributed computers and large touch-screen panels as well as association of hardware consoles and panels.
  • Provides automated training reports.
  • Includes high voltage training functions
  • Simulates all engine room machinery and systems with over 50 Graphical User Interface (GUI) Panels.
  • All systems are interfaced with all engine room parameters, any change in any parts of the systems is immediately affect the other systems, as in reality!
  • Emphasizes all aspects of the electrical operations with realistic functions.
  • Easy graphical user interfaces that considerably decrease the time for learning and allowing instructors to directly move on to the training objectives.
  • Includes 5 User Manuals, allowing to apply the manuals to training programs directly.
  • Includes Exercise Workbooks for students to come to the simulator center with their study books. When books and user manuals are incorporated, it provides a similar work studies in real ships.
  • Exercise Book I is to use in the Operational Level of STCW 2010 training / competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
  • Exercise Book II is to use in the Management Level of STCW 2010 training/ competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
  • Engine room systems are simulated with high resolution rendered components providing easily readable GUIs on screens, which considerably decrease the learning time and moving on to the training subjects.

For more information, clisk here to read the details of the GDS ERS in our ERS product page. https://www.globaldynamicsystems.com/

or watch our YOUTUBE CHANNEL for more information with some example videos.

Use ERS Exercise Workbooks and Manuals in your Operational and Management Level Trainings: Students Love it!

GDS Ship Engine Room Simulator (Ship ERS or SERS™)
User Manuals and Exercise Workbooks

Line Up - ME Fresh Water Cooling System IMO STCW 2010 Training, IMO Model Course 2.07. Prevent Maritime Accidents. Training is Important. Marine Engineering Training Products, Ship Engine Room Simulator, Ship ERS or simply the SERS, provided by GDS Engineering R&D.

ERS User Manuals Set for Meeting IMO Model Course 2.07 (2017 Ed.) Exercise Objectives and STCW 2010 Training Requirements, Supplemented with Root Cause Analysis Exercises

SERS™ is provided with a total of seven (7) user manuals, student exercise workbooks, and documents as complementary to the training practices. All these documents are supplied with a license purchase.

SERS User Manual Vol I (Software Description) describes the SERS software with the SERS Graphical User Interface (GUI) Panels accessed from the SERS Main Graphical User Interface (GUI) Panel.

SERS User Manual Volume II (Engine Room Operations) includes the operational instructions on how to operate the engine room systems and machinery using the SERS. The training institutions can directly use the contents of this manual in their training procedures. There are also exercises included for use by the trainees for reporting.

SERS User Manual Vol III (Installation & Configuration) describes the installation and the configuration of the software and hardware items. Using this manual, SERS can be configured to run as a Distributed System and the touch screen hardware panels can be assigned to desired GUI panels using the configuration files.

SERS User Manual Volume IV (Instructor’s Manual) includes guides, information, and additional exercise tips for the instructors to utilize SERS in their trainings according to a specific training objective.

SERS Philosophy Document provides how SERS may be used in a curricula or in engine room simulator training programs. It provides guides for selecting the configuration of the SERS according to the training objectives.

Student Exercise Workbooks per IMO Model Course 2.07 (2017 Version)

Student Exercise Workbook, Volume I: We are already using the simulator in our own training programs and developed Volume I with exercies that meets each objectives of the IMO Model Course 2.07. Volume I exercises includes the Engine Room Operational Level training objectives.

Student Exercise Workbook,Volume II: Volume II exercises includes the Engine Room Management Level training objectives in accordance with IMO Model Course 2.07.

Using the SERS™ document set in classroom study also promotes the real-world engine room best work practices of using manuals in operation and management of the engine room machinery and systems.
Visit the Ship ERS ( SERS™) product page for more information

training in MIL-STD-810H is essential to grasp the methodologies for environmental testing and the Life Cycle Environmental Profile (LCEP). Understanding the Mission Profile is equally vital, as it outlines the expected operating conditions a system will encounter, forming the basis for relevant environmental tests. Alongside environmental testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) are critical to ensuring that systems can operate without unwanted interference. Training on MIL-STD-461G and MIL-STD-464D Platform Requirements provides crucial insights into EMI/EMC standards for military and avionics systems. In particular, MIL-STD-461G Training and Training on EMI/EMC Testing equip engineers to meet strict compliance requirements that prevent EMI issues, a vital step in the overall Test Management and Environmental Test Management process. Given the complexity and breadth of these standards, GDS Engineering R&D offers a robust Systems Engineering Training Program led by experts like Burak Çavuşoğlu, Ismail Cicek, and Dr. Cicek, with specialized modules on RTCA-DO-160G Training. This training focuses on RTCA DO-160, a widely recognized standard for aircraft environmental testing, covering various Test Sections like Power Input and aircraft electrical interface requirements as defined in MIL-STD-704. GDS Engineering's courses emphasize best practices in tailoring, test planning, and consultancy on Environmental Test Management, ensuring that participants are well-prepared to lead and manage the environmental test sequence effectively. Amid the Covid-19 pandemic, Online Training Programs have become essential for continued learning, providing flexibility for international trainees to access high-quality International Training on MIL-STD and RTCA standards from anywhere. These programs are ideal for both individual engineers seeking career advancement and organizations aiming to build in-house expertise. For those working on military platforms and avionics systems, understanding and applying standards like MIL-STD-810, MIL-STD-461G, and RTCA DO-160 are vital for robust system design. GDS Engineering’s comprehensive training programs, enhanced by the expertise of seasoned professionals, provide foundational knowledge, advanced methodologies, and Consultancy on Test Management that enables teams to achieve high levels of compliance and operational reliability across military and aviation industries. These programs empower engineers to navigate environmental effects and EMI/EMC requirements, essential for the rigorous demands of military and aerospace applications.

Need your ‘Marine Equipment’ be tested and certified?

We provide testing and certification services at Istanbul Technical University Marine Equipment Test Center (METC)

In all project test phases, starting from requirements to verification tests, unit tests, integration tests, environment tests, and final/acceptance testing, we can support you. We can plan and test mechanical products, electrical equipment and devices, composite and innovative materials/alloys, Hazardous Materials (HAZ-MAT) packaging, medical equipment, an many other type of products developed in field use in dynamic environments.

We provide test and evaluation training
at your location
or
at Istanbul Technical University (ITU) Maritime Faculty (ITMF) Campus

in Tuzla, Istanbul.

Online Training on MIL-STD-810H, RTCA-DO-160, MIL-STD-461G Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Training Led by a Live US-based Sr. Instructor: Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems.

Our test center, Marine Equipment Test Center (METC) is located in Tuzla, Istanbul. METC provides accredited services for testing prototypes for harsh environments, such as temperature, humidity, drop, tensite, loading, inside pressure, corrosion, etc. We perform tests according to ISO 17025. We are experienced in developing proposals with verification and validation activities. Whether you are developing a device or a piece of software, we are experienced in developing test plans, procedures, and reports. In short we manage your test project wşth a due diligence.

  • Testing of Hazardous Material (HAZ-MAT) packages for transportation
    (Product testing per ADR Agreement)
  • Testing of Marine Equipment and Life Saving Equipment (LSA) (per IMO LSA Code)
  • Short Training Courses on Test Planning and Documents, Test Standarts, Testing and Test Management
    (Training on MIL-STD-810H, RTCA-DO-160G, MIL-STD-461G, and other standards)
  • Vibration and Shock testing.
  • Testing of military equipment per MIL-STD-810H (DOD/military test standards)
  • Testing of equipment per RTCA-DO-160G (aviation test standards per EASA / SHGM)
  • Tensile testing of metals, composites, alloys, straps, etc.
  • Surface roughness
  • Corrosion testing (MIL-STD-810H, RTCA-DO-160, and including the ASTM sample tests)
  • Static load testing

Online Training on MIL-STD-810H, RTCA-DO-160, MIL-STD-461G, MIL-STD-704 Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Training Led by a Live US-based Sr. Instructor: Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. FAA Requirements Management. Efficient way of learning. Continues Education. Class Material.

The manager of the METC facility, Dr. Ismail Cicek, have long years of testing experties since 2000s. MIL-STD-810G, RTCA-DO-160, ADR agreement for testing of hazardous packaging materias for transportation, Life Saving Appliances (LSA) Code are some of the standarts that we are experienced with and we do have the labratory with test infrastructure. Recently, testing of big HAZMAT packages (Internmediate Bulk Container, IBC) capability was added.

Additionally, some verification activities can be done using analysis techniques. We can perform Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA), Fluid-Structure Interference (FSI) analysis in design stage for design verification and optimization.

GLOBAL DYNAMIC SYSTEMS (GDS)
TRAINING COURSES
Worldwide, Online, for ‘Groups’ or ‘Individuals’

Training on
MIL-STD-810H
ENVIRONMENTAL TESTING

Training on
EMI/EMC Testing
(per RTCA-DO-160 & MIL-STD-461)

Training on
Vibration and Shock
Testing

Training on
Systems Engineering
(DoD/FAA/NASA/EASA)

Training on
RTCA-DO-160G
ENVIRONMENTAL TESTING

Training on
MIL-STD-461G EMI/EMC Testing
(incl. MIL-STD-464)

Training on
Requirements Management
(FAA/EASA/US DoD/NASA)

Training on
MIL-STD-704F
Aircraft Electrical Interface

Online Training on MIL-STD-810H, RTCA-DO-160, MIL-STD-461G Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Training Led by a Live US-based Sr. Instructor: Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained.