GDS SERS is now in use by a Malasian Maritime Institution

SERS, which is currently being used in both distance and face-to-face training in a training center established in Malta, ITU Northern Cyprus Department of Marine Engineering, and Yıldız Technical University Faculty of Naval Architecture and Maritime Studies in Ship Engine Room Simulator courses, has also started to be used in an educational institution in Malaysia. SERSTM, which will begin being used in the Engine Room Team Management training of personnel currently working on ships in Malaysia this summer, will be used in training 3rd and 4th-year maritime candidates at the beginning of the fall 2022 semester. For SERS, which is planned to be installed in stages, a system was established on June 22, 2022, where six students can receive training, and the installation will continue by increasing the number of students.

Akademi Maritim Penjana ilmu

SERS™, which was successfully installed via remote access to an educational institution in Malaysia, has also become the new favorite of maritime trainers in Malaysia. According to Çağrı Berk Güler, who coordinated the stages during the installation and is part of the group that developed SERS™, one of the biggest reasons for the preference of educational institutions and companies abroad is that remote installation can be carried out and the program is elementary to ensure compatibility with Windows-based systems.

The simulator, made ready for use with full remote access at the educational institution in Malaysia, was installed on the educational computers and then used in training. The institution said they decided to use SERS™ remotely and liked it very much. After the pilot class application, they planned to use the software for all laboratory classes.

Chief Engineer Nazir Hamzah converted the classroom into an Engine Room Team Management Training Lab using SERS™. More components and licenses will be added incrementally. This is a great approach for starting education and training.

About SERS

SERS™ covers all training given using an engine room simulator, as specified in IMO STCW 2010 qualification tables. Also covering IMO Model Course 2.07 (2017) Applications, SERS™ has started to make a name for itself, especially abroad, and has attracted the attention of the maritime sector in the Turkish market, as it offers many academic and practical applications that are not available in simulators currently used in training institutions. The essential features of SERS™, which is developed in a modular structure that can be installed in many different configurations and supplied with various budgets, its advantages and differences from competitor products and application configuration types are explained in detail on the GDS company website.

GDS Systems Engineering Training Programs Banner

Download GDS Environmental Qualification Tests Training Course Description Documents in PDF Files: Training on MIL-STD-810H, RTCA-DO-160G, MIL-STD-461G, ….


Warning: Undefined array key "file" in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Deprecated: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Warning: Undefined array key "file" in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Deprecated: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Warning: Undefined array key "file" in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

Deprecated: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in /home/nfrt1mhnl4sv/globaldynamicsystems.com/wp-includes/media.php on line 1759

GDS Engineering R&D provides online international focused training on

  • MIL-STD-810H: Training on Environmental Qualification Testing of Military Equipment and Products
  • RTCA-DO-160G: Training on Environmental and EMI/EMC Testing of Airborne Equipment and Products
  • MIL-STD-461G: Training on EMI/EMC Testing of Military Electrical and Electronic Equipment and Devices
  • Requirements Management (Systems Engineering Process followed by FAA/EASA, DOD)
  • MIL-STD-704F Training on Aircraft Electrical Interface
FilenameFile DescriptionDownload Link
RTCA-DO-160G Training Description.PDFTraining Description Document for
The Training on Environmental and EMI/EMC Testing of Airborne Equipment and Products
Download
MIL-STD-810H Training Description.PDFTraining Description Document for
The training on Environmental Qualification Testing of Military Equipment and Products
Download
MIL-STD-461G Training Description.PDFTraining Description Document for
The Training on EMI/EMC Testing of Military Electrical and Electronic Equipment and Devices
Download
MIL-STD-704 Training Description Document. pdfTraining Description Document for
The training on aircraft electrical interface includes the primary standard document and eight associated guides.

Download
Systems Engineering and DoD Projects Management Training.pdfTraining Description Document for
The Training on Systems Engineering and DoD Projects Management

Download
Requirements Management Engineering Training Description Document.pdfTraining Description Document for
The Training on Requirements Management Engineering.

Download
Applied Vibration Testing Training Description Document.pdfTraining Description Document for
Applied Vibration Testing.

Download

Online Training on RTCA-DO-160G Environmental Testing of Products, Airborne Equipmen for Platform Qualification. Provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Training Led by a Live US-based Sr. Instructor: Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems.

TRAINING PROGRAM DESCRIPTION: RTCA-DO-160G: Environmental-EMI/EMC Testing of Airborne Equipment

Training on Environmental and EMI/EMC Testing of Airborne Equipment

TRAINING PROGRAM DESCRIPTION

Two and a half days of

focused International and Online Training

on RTCA-DO-160G

by

GDS Engineering R&D, Inc.

Display or download the PDF file: GDS MIL-STD-461G Training Desription
or read all details of this training program at: https://www.globaldynamicsystems.com/systems-engineering-training-courses/training-on-rtca-do-160g-testing/

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.

Upcoming Events


About the Instructors

The main instructor of the training is Dr Ismail Cicek. An Avionics Chief Engineer (EE) who is also a Certified Verification Engineer (FAA/EASA) also assists the trainings. Our experienced test personnel also becomes avialable for demonstrations and discussions.

A Certified Verification Engineer (CVE) iaw FAA/EASA and with 18 years of experience. He has worked as the avionics systems chief engineer in product development of avionics systems. He is also experienced in the product testing per environmental and EMI/EMC standards and FAA/EASA certification processes.

Our experienced personnel also support our training programs. They are actively participating in the environmental testing of products.

Dr. Ismail Cicek studied PhD in Mechanical Engineering Department at Texas Tech University in Texas, USA. He study included random vibration. He has both industrial and academic experience for over 30 years.

He gained engineering and leadership experience by working in the United States Department of Defence projects and programs as systems development engineer for 15 years. He led the development of various engineering systems for platforms including C-5, C-17, KC-10, KC-135, and C-130 E/H/J.  Dr. Cicek’s experience includes unmanned aerial vehicle development where he utilized the Geographical Information Systems (GIS) and Malfunction Data Recorder Analysis Recorder System (MADARS) development for military transport aircraft. 

Dr Cicek worked as the lab chief engineer for five years at the US Air Force Aeromedical Test Lab at WPAFB, OH. He received many important awards at the positions he served, due to the excellent team-work and his detail oriented and energetic personality.  These included Terra Health’s Superior Client Award in 2009 and Engineering Excellence Award in 2010 as well as an appreciation letter from the US Air Force Aeronautical Systems Center (ASC), signed by the commander in charge.

Dr Cicek also established a test lab, called Marine Equipment Test Center (METC) and located at Istanbul Technical University, Tuzla Campus, for testing of equipment per military and civilian standards, such as RTCA-DO-160. Providing engineering, consultancy, and training services to many companies and organizations, Dr. Cicek has gained a great insight into the tailoring of standard test methods in accordance with military standards, guides, and handbooks as well as Life Cycle Environmental Profile LCEP) developed for the equipment under test.

Dr. Cicek also completed various product and research projects, funded in the USA, EU, and Turkey. He is currently teaching at Istanbul Technical University Maritime Faculty, Tuzla/Istanbul. He is the founding manager of the METC in Tuzla Campus of ITU. Meanwhile, he provided engineering services, consultancies, and training to many organizations for product development, engineering research studies such a algorith development, test requirements development, and test plans and executions.

Dr Cicek worked as the Principle Investigator and became a Subject Matter Expert (SME) at the US Air Force Aeromedical Test Lab (WPAFB/OH) for certifying the products to the US Air Force Platform Requirements. He also developed Joint Enroute Care Equipment Test Standard (JECETS) in close work with US Army Test Lab engineers and managers.

Read DAU Paper: “A New Process for the Acceleration Test and Evaluation of Aeromedical Equipment for U.S. Air Force Safe-To-Fly Certification”. Click to display this report.

Connect with Dr Ismail Cicek: Linkedin Page

Click here to read more about Dr Cicek’s professional studies.

GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests.

MIL-STD-461G Training Description

MIL-STD-461G Training on EMI/EMC Testing of Military Equipment

TRAINING PROGRAM DESCRIPTION

Two and a half days of focused International and Online Training on MIL-STD-461G (& MIL-STD-464D)

by

GDS Engineering R&D, Inc.

Display or download the PDF file: GDS MIL-STD-461G Training Desription
or read details of the program at: https://www.globaldynamicsystems.com/systems-engineering-training-courses/mil-std-461g-training/

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.

Upcoming Events


Underwater Radiated Noise and Sealife. Powerships and noise emittance. maritime studies

Terrestial and Underwater Radiated Noise from Powerships: Testing and Evaluation

The increase in shipping activity globally has resulted in an increased awareness of impacts on the marine environment. Effects of noise pollution, especially on marine life, have become highly prominent. Marine life is extremely sensitive to noise pollution. Due to their extreme reliance on underwater sounds for basic life functions like searching for food and mate and an absence of any mechanism to safeguard them against it, underwater noise pollution disrupts marine life (Singla, 2020). In short, marine animals depend on sound to live, making and listening to it in various ways to perform various life functions (US Bureau of Ocean Energy Management, 2014).

Noise travels much more in water, covering greater distances than it would do on land while travelling through air. Underwater sound has both pressure and particle motion components and hearing can be defined as the relative contribution of each of these sound components to auditory detection (Popper AN, 2011). Sounds radiated from ships are among the underwater noise sources. Among shipborne Underwater Radiated Noise (URN) sources are the following:

  • Propeller’s rotational turn and the blades hitting to water flow lines
  • Propeller’s cavitation
  • Ship hull structure’s interaction water (fluid-structure interaction)
  • Mechanical noises from onboard machinery
Underwater Radiated Noise and Sealife. Powerships and noise emittance. maritime studies
Diagram Illustrating Three Significant Paths of Underwater Noise Generation from Machinery (NCE Report 07-001, 2007).

Click here to read the report generated by NCE (NCE Report 07-001, 2007)

All of these noise sources are radiated to underwater from ships, especially when the ship speed is at higher rates, i.e. above 15 knots.

When a Powership is considered, out of the 4 aforementioned noises, only mechanical noise sources are of concern as there are no noises that emanate from the other three sources because the Powership is docked. Mechanical onboard noises are still of concern and therefore need to be evaluated and tested for the assessment of their potential negative effects to marine life.

GDS Engineering R&D has the capability for measuring the underwater radiated noise and assessment of the results based on the effect to the sealife in the region.

References of GDS Simulator Users
&
Solution Partners
in
Maritime Training and Research

Prevention of Maritime Accidents. Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms. Root Cause Analysis. Root Cause Flow Charts. Collision Accidents. Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis. MCA. , Fault tree method, Multiple correspondence analysis, Collision Regulation, CollReg. Human Error. The results represent the cause statistics of the ship-to-ship collision accidents that occurred in the last 43 years. Considering the collision accident reports data, our results show %94,7 of collision accidents are related to human error.

Categories of Maritime (Ship) Accident Types and Research Studies

Categories of Maritime (Ship) Accident Types

Lloyds Maritime Information Services (LMIS) has a casualty database which divides the maritime (ship) accidents into the following categories:

1. Foundered – includes ships which sank as a result of heavy weather, leaks, breaking into two, etc, and not as a consequence of other categories such as collision etc.

2. Missing vessel – includes ships that disappeared without any trace or witnesses knowing exactly what happened in the accident.

3. Fire/explosion – includes ships where fire/explosion is the first event reported, or where fire/explosion results from hull/machinery damage, i.e. this category includes fires due to engine damage, but not fires due to collision etc.

4. Collision – includes ships striking or being struck by another ship, regardless of whether under way, anchored or moored. This category does not include ships striking underwater wrecks.

5. Contact – includes ships striking or being struck by an external object, but not another ship or the sea bottom. This category includes striking drilling rigs/platforms, regardless of whether in fixed position or in tow.

6. Wrecked/stranded – includes ships striking the sea bottom, shore or underwater wrecks.

7. War loss/hostilities – includes ships damaged from all hostile acts.

8. Hull/machinery damage – includes ships where the hull/machinery damage is not due to other categories such as collision etc.

9. Miscellaneous – includes lost or damaged ships which cannot be classified into any of the categories 1 through 8 due to not falling into any of the categories above or due to lack of information (e.g. an accident starting by the cargo shifting would typically be classified as miscellaneous).

Above is also referenced in Wartsila website. Man Over Board (MOB) event, a person falling into water, is not referenced in the above listing.

 

However;

IMO accidents website, Global Integrated Shipping Information System (GISIS), refers to Man Over Board as another accident type, which may end with a death or injury. We would like to refern the following two of our publications for the details of MOB and Collision accident types:

Title: Maritime Investigation Reports Involving Man-Over-Board (MOB) Casualties: A Methodology for Evaluation Process, Turkish Journal of Maritime and Marine Sciences, Vol: 5 No: 2 (2019) 141-170. Authors: Orhan Gönel and İsmail Çiçek. Click this link for more information...

Title: Analysis and assessment of ship collision accidents using Fault Tree and Multiple Correspondence Analysis, Ocean Engineering, Volume 245, 2022, 110514, ISSN 0029-8018. Authors: Hasan Ugurlu and Ismail Cicek. Click this link for more information...

 

With these studies, we categorize the maritime investigation reports into the following groups, which is more inline with the  International Maritime Organization (IMO) ‘Casualty Investigation Code’ (CI Code) (2008):

Ship:

  • Grounding/Stranding 
  • Collision/Contact/Allision
  • Fire/Explosion
  • Flooding/Foundering
  • Capsizing/Listing
  • Damage to ship or equipment

Crew:

  • Man-Over-Board (MOB)
  • Injury/Death